
VIRTUAL LOCALIZATION FOR MESH NETWORK ROUTING

Nick Moore Ahmet Şekercioğlu Gregory K Egan

Center for Telecommunications and Information Engineering
Monash University, Melbourne, Australia

email: nick.moore@eng.monash.edu.au

ABSTRACT

We present a novel distributed ‘virtual localization’
method for mesh networks, such as sensor meshes, which
does not depend on radio ranging or the existence of an-
chor nodes. We show in simulation that it can be used for
establishing efficient and reliable location-based routing in-
formation.

KEY WORDS
Mesh Networks, Localization, Routing, Distributed Algo-
rithms

1 Introduction

1.1 Sensor Networks

Miniaturized sensors which measure temperature, pressure,
humidity and various chemical concentrations have be-
come simple to mass-produce in recent years. The data pro-
cessing power required to compress and analyse the mea-
surements has become very cheap.

Data however must still be collected and brought back
for analysis. Where there are only a small number of sen-
sor nodes, it is practical to collect this data by hand, or fit
each node out with a powerful radio transmitter but where
hundreds of nodes are required such as in large scale envi-
ronmental sensing this rapidly becomes impractical.

Sensor networks avoid this scalability issue by putting
nodes in communication with each other. Rather than gath-
ering data from each node, data can be relayed from node to
node and gathered or transmitted from a single point. The
difficulty is in configuring the network of nodes: not every
node can communicate directly with every other node, and
the topology of the network may change as nodes move or
fail, new nodes are added, or just as the weather changes.

1.2 Mesh Sensor Networks

Mesh sensor networks get around the problem of network
configuration by allowing the network to self-configure.
Small, cheap sensor nodes (often called ‘motes’) collect en-
vironmental data and communicate with nearby nodes us-
ing low-power, short range wireless interfaces. When the
density of nodes is sufficient, they form a mesh of network

A
B C D

E F

H
J

K
M

G

L

Figure 1. Greedy Forwarding

links, across which data can be transferred from node to
node or back to a central repository.

Battery power is limited, and so computational power
and network usage are precious resources. A mesh sensor
node must preprocess and transmit its data as efficiently as
possible, and this requires an efficient way to route com-
munications from node to node.

1.3 Routing Within a Mesh

The classic Internet routing strategy of hierarchical parti-
tioning into sub-networks [1] is not appropriate for mesh
networks. Mesh networks are generally not planned and
may even be entirely ad-hoc. Imposing a hierarchical struc-
ture or a spanning tree over the mesh would be difficult and
inefficient.

There are many possible methods for routing within
meshes [2]. Most either require centralized control or a
large amount of data to be ‘flooded’ across the network to
let every node know about every other node. The extra traf-
fic on the mesh network requires extra resources so more
resource efficient strategies are desirable.

1.4 Location-based Routing

If the location of each node can be determined, ‘Location-
based Routing’ algorithms can be used. The simplest of
these methods, known as ‘greedy forwarding’, is for a node
to forward packets to whichever of its neighbours is closest
to the destination.

Figure 1 shows the operation of greedy forwarding. A
packet starting at H is forwarded to whichever neighbour
of H is closest to the destination G – in this case, E. This

process continues as the packet is forwarded to F , M , D

and finally G. Greedy forwarding does not always find the
optimal path1 but it generally produces a reasonably effi-
cient route to the destination.

However, it is possible for packets forwarded by this
method to end up blocked by ‘voids’, where an intermedi-
ate node is closer to the destination than any of its neigh-
bours, and thus cannot determine where to forward the
packet. For example, a packet travelling from J to G would
be forwarded along the path

−−−→
JKL, and be stuck at L as L

has no neighbours closer to G than itself. Schemes such
as GPSR [3] and INR [4] have been developed to mitigate
this problem by using alternative strategies when greedy
forwarding fails.

1.5 Determining Location

The routing algorithms discussed above require that all par-
ticipating nodes are able to obtain location information.
Where does this information come from? The naı̈ve solu-
tion is to equip every node with a Global Positioning Sys-
tem (GPS) receiver or a similar out-of-band location de-
termination method. However, GPS receivers are still too
large and expensive for use in tiny, ubiquitous nodes, and
are inaccurate or unusable indoors.

Several papers suggest ‘anchoring’ networks with
some percentage of nodes which can determine their loca-
tion, and then determining the position of the other nodes
by geometric constraints [5, 6], by iterative methods [7, 8]
or using Kalman Filters [9]. However, the ‘anchor’ nodes
may be up to 20% of the population, which establishes an
undesirable hierarchy in our formerly egalitarian mesh.

A naı̈ve approach to localization would be to assume
that nodes can measure their distance from their neighbours
based on radio propagation – signal levels are assumed to
attenuate as a function of distance. However, radio propa-
gation in the real world is rarely so simple. Due to diffrac-
tion, scattering, reflection, refraction and attenuation by in-
tervening materials [10], signal strength is not a one-to-one
function of distance. Localization algorithms can assume a
limited correlation with signal strength [11] at best.

Location-based routing requires only relative loca-
tion information, and if geographic location is not needed
for other purposes, location can be decoupled from reality
and a ‘virtual location’ determined instead. Anchor nodes
can be dispensed with and geometric [12], iterative[8] or
energy-minimization [13] methods can be used to find a
situation which is internally consistent and thus usable for
location-based routing algorithms.

Virtual locations are generally only useful for routing
purposes as they do not correspond to geographic locations.

1path −−−−−−→

HEFCG would be shorter in both distance and hops, but F

will forward the packet to M as M is closer to G than C is.

Attraction Attra
ction

Repulsion

C

B

A

Figure 2. Simple Spring Model

1.6 Mathematical Publications

Decades before engineers began considering mesh net-
works, mathematicians were seeking a way to present
graph topologies neatly on paper. The language used by
mathematicians is different to that used by engineers: for
‘network’, ‘node’ and ‘link’, substitute ‘graph’, ‘vertex’
and ‘edge’. The process of assigning each vertex a loca-
tion for plotting is referred to as ‘graph embedding’.

Eades [14] presents a system to lay out graphs with
“less than 30 vertices”, using a simple physical attrac-
tion/repulsion model.

Fructerman and Reingold [15] use a similar method
with a less directly physical model and a number of opti-
mizations to speed convergence.

Kamada and Kawai [16] delve more deeply into the
mathematics, considering the differential equations of a lin-
ear spring model.

Davidson and Harel [17] use a quite different ap-
proach, which seeks to minimize a cost function. By stating
the problem in this form, general optimization strategies
such as ‘simulated annealing’ may be applied.

2 The Algorithm

2.1 Spring Models

Figure 2 shows a simple spring model: masses A and C are
attached to mass B by springs, and A and C are repelled
from each other by an electrostatic-like force.

Nothing specifies that A, B and C should end up in a
straight line, with A and C equidistant from B. But since
this is the configuration with the minimum energy, this is
the configuration that the springs and masses will converge
upon.

This emergent behaviour of the simple spring model
is central to the Virtual Localization algorithm presented
here.

2.2 Encoding Virtual Location

Our implementation of the Virtual Localization algorithm
uses three 32-bit signed integers to represent a position in a
three-dimensional Euclidean space. Using an N +1 dimen-
sional virtual location to solve an N dimensional problem

1−Neighbour

1−Neighbour1−
N

ei
gh

bo
ur

1−Neighbour

2−NeighbourA

D

CB

Figure 3. 1-neighbours and 2-neighbours

may seem excessive, but it allows an extra degree of free-
dom to prevent nodes being trapped in local minima.

2.3 n-Neighbours

When a node can communicate directly with another node,
it records that node as a neighbour of distance 1 hop, or a
‘1-neighbour’ for short.

A 1-neighbours’ 1-neighbour which is not also your
1-neighbour is referred to as your ‘2-neighbour’, because it
is a minimum of 2 hops away.

In Figure 3, A has 1-neighbours B and D, and via B

it knows of a 2-neighbour C.

2.4 Beacons

Nodes must communicate their position estimates, and they
do this by sending broadcast ‘beacon’ messages over their
network interfaces. They do so periodically, with a ran-
dom offset to avoid network congestion. In our simulation
experiments (section 4), beacons are sent every 50 to 150
ms.

Each beacon indicates the identity and current virtual
location of the node, and the identities, hop distances and
virtual locations of its 1-neighbours. Each beacon should
take up no more than a kilobyte, as there is generally no
need to consider more than a dozen 1-neighbours.

2.5 Forces and Potentials

The Virtual Localization algorithm seeks to minimize the
overall potential energy of the network by allowing each
node to minimize its own potential energy. In this way,
a global solution can be converged upon using only dis-
tributed processing and localized signalling.

1-neighbours have a ‘spring-like’ attraction:

Uij = katt · d
2

ij

where Uij is the potential energy felt by the node i due to
the node j, dij is the distance between them and katt is a
constant.

2-neighbours have a ‘electrostatic-like’ repulsion,
with a small offset to prevent infinities:

Uik = krep ·

1

dik + 1

where Uij is the potential energy felt by the node i due to
the node j, dij is the distance between them and krep is a
constant.

The total potential energy for a node i, written Ui, is
found by summing these potentials:

Ui =

∑

j∈N

Uij

The values of the constants katt and krep have been chosen
as 1 and 8 × 106 respectively, so that a network of three
nodes in a line settles to an even spacing of 100. This
is for convenience only: it keeps the coordinates human-
readable, and allows the implementation to use mostly in-
teger arithmetic.

2.6 Perturbation

A very simple iterative descent method is used: at each
iteration, the node’s location is perturbed slightly, its new
energy calculated, and if this energy is greater, the old loca-
tion is restored. At each recalculation, 50 perturbations are
tried. While this is an inefficient convergence compared to
force-direction models, it simplifies the code enormously
which leads to good performance.

2.7 Root Node

While it is desirable for all nodes to have the same proper-
ties, the simulation used to test this algorithm has one node
with a special property – the root node. This node never
recalculates its position, and is always at location (0,0,0).
This is not an essential property of this algorithm, but is a
useful one for a network which will be linked to the outside
world, as the root node can act as a gateway to the Internet
or other large network.

The root node does not provide centralized processing
to the mesh. In fact, the root node does less processing
than the other nodes, as it never recalculates its position.
Once converged, communication within the mesh does not
depend on the root node, and so it is not a single point of
failure.

Convergence occurs much more readily when the
mesh network calculation is allowed to expand from a sin-
gle node to its neighbours and their neighbours and so forth.

For these experiments, nodes other than the root node
do not send their own beacons until they have received 5
beacons from other nodes. Beacons are sent frequently, so
this does not introduce a long delay, but it does allow a node
to become aware of each of its neigbours before deciding
on an initial position. The root node is arbitrarily chosen as
the first node to send a beacon.

3 Walkthrough

In this section we will show the operation of the algorithm
through a simple network of three nodes: A, B and C.

A is the root node, it begins at (0,0,0) and broadcasts
the first beacon:

ID Distance Coordinate
A 0 (0,0,0)

This beacon informs any receiving node that A be-
lieves it is at (0,0,0) and does not know of any neighbours.
The distance of 0 indicates that this is the identity and vir-
tual location of the node sending the beacon. Nodes receiv-
ing this beacon will become aware of A as a 1-neighbour.

At some time after receiving this beacon, B will wake
up and recalculate its own virtual location. At this point B

only knows of one neighbour – A. B performs an iterative
descent to find the point of lowest potential energy, and as
it is attracted to A and knows of no other neighbours, it will
converge on coordinate (0,0,0).

B sends the following beacon:

ID Distance Coordinate
A 1 (0,0,0)
B 0 (0,0,0)

This beacon will be received by A and by C. The
distance of 1 indicates that A is a 1-neighbour of B. A will
learn of B’s existence, but take no action. C will learn of
both A’s and B’s existence, and it will be attracted to B, a
1-neighbour, and repelled from A, a 2-neighbour.

When C recalculates its position it will combine po-
tential energies from attraction and repulsion, as in Figure
4. C will take its initial location from B, and iteratively de-
scend from this maximum into the circular minimum sur-
rounding it. The exact path it takes is unimportant, but it
will end up with dCB = dCA ≈ 158, which is the distance
at which the potential energy is minimized.

For the sake of clarity, suppose that C changes its vir-
tual location only in the positive X direction. The minimum
energy will be at the coordinate (158,0,0), and C will take
this as its new virtual location.

C sends:

ID Distance Coordinate
B 1 (0,0,0)
C 0 (158,0,0)

When B next recalculates its position, it will find it-
self attracted to both A and C, as in Figure 5. Its poten-
tial energy minima will be half-way between A and C, at
(79,0,0).

B sends:

ID Distance Coordinate
A 1 (0,0,0)
B 0 (79,0,0)
C 1 (158,0,0)

C is still attracted to B and repelled by A, and as the
nodes continue to communicate, they will drift apart until
they reach an equilibrium when dAB = dBC =

1

2
dAC =

100. Figures 5 and 6 show the energy minima in this situa-
tion.

In the case described here, A is the root node, and
does not change its position. This simplifies the explana-
tion. In most cases, many nodes will be asynchronously re-
calculating and beaconing their virtual locations. The same
principles apply even in complicated situations.

4 Test Scenarios

4.1 Simulation

A discrete event simulation program was written in C in or-
der to develop and test the algorithm. Other programs were
written to generate network topologies and to transform the
simulation output into graphs and animations.

A simple ‘greedy forwarding’ algorithm has been in-
cluded to periodically test nodes for routeability. A node N

is considered routeable if a packet can be routed from
node N to the root node at (0,0,0), and that a packet can be
routed from the root node back to the location of node N .
All nodes are routeable in the maps presented, but occa-
sionally nodes are temporarily unrouteable until the net-
work layout converges, and sometimes nodes remain un-
routable if they are hidden behind routing ‘voids’. This
effect would be mitigated if a more sophisticated routing
algorithm was used.

4.2 Comparing Topologies

The virtual location generated for each node does not di-
rectly correspond to the real location of that node, making
it difficult to visually compare the results. In addition, the
virtual location space is three dimensional, and is projected
orthographically for presentation in this paper.

The network maps in Figure 7 have been manually
rotated about X and Y and Z to make visual comparison
easier.

4.3 200 Node Mesh

Typically, mesh routing algorithms are tested on a network
with nodes placed completely at random. Randomly as-
signing the locations of nodes is inefficient, with large num-
bers of nodes required to provide complete coverage. A
high density of nodes is needed if the network is not to be
disjoint.

Instead, for this paper we have placed nodes randomly
within the restriction that the minimum distance between
any two nodes is half the range, and that every node is
placed within range of at least one neighbour. This ensures
a non-disjoint network with a limit on the density of nodes
and a limit on the number of neighbours of any given node.
This kind of placement would be typical where it is pos-
sible to select the approximate position of a node but the
exact position depends on other factors such as the terrain.

minAB

U_C (sum)
U_CB (attraction)
U_CA (repulsion)

 0 100 200

AB min

Figure 4. UC with dAB = 0

CminA

U_B = U_BA + U_BC
U_BA (attraction)
U_BC (attraction)

 0 100 200

A min C

Figure 5. UB with dAC = 200

minBA

U_C = U_CA + U_CB
U_CB (attraction)
U_CA (repulsion)

 0 100 200

A B min

Figure 6. UC with dAB = 100

001200 : 28 / 28 / 200

A

002400 : 104 / 104 / 200

B
003600 : 167 / 167 / 200

C

004800 : 196 / 196 / 200

D

006000 : 200 / 200 / 200

E

Actual Network Map

F

Figure 7. This diagram shows a series of snapshots at A: 1200, B: 2400, C: 3600, D: 4800 and E: 6000 milliseconds, as the
nodes progressively discover their virtual locations; F: a map of the original network layout for comparison purposes. The root
node is marked.

The Virtual Localization algorithm can then be used to find
an efficient routing map of the network.

Figure 7 shows a network constructed in this manner,
and illustrates the process of determining virtual locations
for each node in the network. The area of interest is one
square kilometre, and the communication range is 100 me-
tres.

An animated GIF file showing the progress of
this convergence can be found at http://www.ctie.
monash.edu.au/mesh/virt_loc/

4.4 400 Node Random Mesh

The results of testing a 400 node mesh with randomly
placed nodes are not presented here due to space con-
siderations, but are available at http://www.ctie.
monash.edu.au/mesh/virt_loc/

5 Conclusions

Virtual Localization provides a distributed method for con-
structing a ‘virtual map’ of a mesh network, without GPS-
equipped anchors, broadcast flooding or centralized pro-
cessing.

This virtual map can be used for location-based rout-
ing traffic through a mesh network, providing efficient in-
ternal connectivity for sensor mesh networks.

Future works will investigate the use of more sophisti-
cated routing algorihtms with Virtual Localization, the use
of Virtual Localization with mobile and short-lived nodes
and the incorporation of relative and absolute direction in-
formation into the Virtual Localization algorithm.

References

[1] R. Hinden, M. O’Dell, and S. Deering. RFC2374:
an IPv6 aggregatable global unicast address for-
mat. URL: http://www.ietf.org/rfc/
rfc2374.txt, July 1998.

[2] Martin Mauve, Jörg Widmer, and Hannes Harten-
stein. A survey on position-based routing in mobile
ad-hoc networks. IEEE Network Magazine, 15(6):30
– 39, November 2001.

[3] Brad Karp and H. T. Kung. GPSR: Greedy perime-
ter stateless routing for wireless networks. Proc.
ACM/IEEE Int. Conf. on Mobile Computing and Net-
working (MobiCom 2000), 2000.

[4] Douglas S. J. De Couto and Robert Morris. Location
proxies and intermediate node forwarding for practi-
cal geographic forwarding. Technical Report MIT-
LCS-TR824, MIT Laboratory for Computer Science,
June 2001.

[5] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less
low cost outdoor localization for very small devices.
IEEE Personal Communications, Special Issue on
Smart Spaces and Environments, October 2000.

[6] L. Doherty, K. Pister, and L. El Ghaoui. Convex po-
sition estimation in wireless sensor networks. IEEE
Infocom 2001, pages 1655–1663, April 2001.

[7] Chris Savarese, Jan Rabsey, and Koen Langendoen.
Robust positioning algorithms for distributed ad-hoc
wireless sensor networks. USENIX Technical Annual
Conference, June 2002.

[8] A. Rao, S. Ratnasamy, C. Paradimitriou, S. Shenker,
and I. Stoica. Geographic routing without location in-
formation. Proceedings of ACM MobiCom ’03, pages
96–108, September 2003.

[9] Andreas Savvides, Heemin Park, and Mani B. Srivas-
tava. The bits and flops of the n-hop multilateration
primitive for node localization problems. WSNA ’02,
pages 112–121, September 2002.

[10] A. Neskovic, N. Neskovic, and G. Paunovic. Modern
approachs in modeling of mobile radio systems prop-
agation environment. IEEE Communications Surveys,
2000.

[11] T. He, C. Huang, B.M. Blum, J.A. Stankovic, and
T. Abdelzaher. Range-free localization schemes for
large scale sensor networks. Proceedings of ACM Mo-
biCom ’03, pages 81–95, September 2003.

[12] Srdjan Čapkun, Maher Hamdi, and Jean-Pierre
Hubaux. GPS-free positioning in mobile ad-hoc net-
works. Hawaii Int. Conf. on System Sciences (HICSS-
34), pages 3481–3490, January 2001.

[13] Andrew Howard, Maja J Mataric, and Gaurav
Sukhatme. Relaxation on a mesh: a formalism
for generalized localization. Proceedings of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems (IROS 2001), October 2001.

[14] Peter Eades. A heuristic for graph drawing. Congres-
sus Numerantium, 42:149–160, 1984.

[15] Thomas M. Fruchterman and Edward M. Reingold.
Graph drawing by force-directed placement. Software
– Practice and Experience, 21:1129–1164, November
1991.

[16] Tomihisa Kamada and Satoru Kawai. An algorithm
for drawing general undirected graphs. Information
Processing Letters, 31:7–13, April 1989.

[17] Ron Davidson and David Harel. Drawing graphs
nicely using simulated annealing. ACM Transactions
on Graphics, 15(4):301–331, 1996.

