JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

3275

A Hybrid Classifier Using Reduced Signatures
for Automated Soft-Failure Diagnosis 1n
Network End-User Devices

C. Widanapathirana X. Ang J. C. Li

M. V. Ivanovich

P. G. Fitzpatrick Y. A. Sekercioglu

Department of Electrical and Computer Systems Engineering, Monash University, Australia

{chathuranga.widanapathirana, xavier.ang, jonathan.li, milosh.ivanovich, paul.fitzpatrick, ahmet.sekercioglu} @monash.edu

Abstract— We present an automated system for the diagnosis
of both known and unknown soft-failures in end-user de-
vices (UDs). Known faults that cause network performance
degradation are used to train the classifier-based system in a
supervised manner while unknown faults are automatically
detected and clustered to identify the existence of new
categories of soft-failures. The supervised classifier used in
the system can be retrained by including the newly detected
faults to enhance its performance.

The system uses 460 features to construct Normalized Sta-
tistical Signatures (NSSs) for fault characterization. Due to
the high dimensionality of NSSs, EigenNSS was proposed to
reduce the complexity without losing important information.
Because of the natural network inconsistencies that exist
in communication links, we propose FisherNSS, a reduced
signature that provides improved linear separability between
classes to further enhance classification performance.

The system is evaluated over a live campus network using
17 emulated UD faults. The results show that the best
overall classification accuracy of up to 97% was achieved
by using FisherNSS with a dimensionality reduction of
96.74%. In comparison, both EigenNSS and FisherNSS have
faster training and diagnosis time compared to NSS, which
makes them suitable for on-demand as well as real time
diagnostic applications. Furthermore, FisherNSS compared
to EigenNSS has a higher diagnostic accuracy and quicker
diagnosis time (order of microseconds).

[. INTRODUCTION

Network performance problems affect many end-users,
ranging from everyday internet users to large corpora-
tions. Studies have shown that these problems are caused
by service provider servers, backbone networks, access
networks, or the end-user devices (UDs) themselves [1].
The performance of a network is usually defined by two
main categories [2]: hard-failures and soft-failures. Hard
failures correspond to the inability to transfer any data
between users and the network, which can be easily iden-
tified and resolved due to immediately noticeable loss in
connectivity. Soft-failures are characterized by degraded
performance, which are more difficult to diagnose and are
usually assisted by Network Monitoring Systems (NMS)
to collect signs from the network. However, interpreting
such signs to diagnose the root causes of the problem still

©2014 ACADEMY PUBLISHER
doi:10.4304/jnw.9.12.3275-3289

require expensive resources which include intervention by
skilled personnel.
Possible root causes of soft-failures in UDs are

« misconfiguration of parameters in the protocol lay-
ers, generally due to the conservative default values
in operating systems [3],

o Hardware problems such as new application instal-
lations, NIC driver issues,

o kernel level software problems,

« mismatch between system settings and the link [4],
or

¢ protocol implementation errors [5].

Recently, researchers have proposed an automated di-
agnosis solution especially focused on core networks,
access networks and servers [6] but there is not much
development taking place in automated solutions for UDs.
Diagnosis methods based on collected packet traces over
a TCP (Transmission Control Protocol) connection have
been shown to be effective for finding the root causes
of network performance problems [7]. Collected packet
traces contain artifacts that represent behavioural char-
acteristics of the network. These characteristics can be
utilized by skilled investigators to identify the root causes
of the faults. Another advantage of trace analysis-based
diagnosis approach is that the traces can be collected very
easily without the requirement of any special equipment.

A. Motivation

Our search on the research literature has revealed the
lack of a fully automated solution for identifying the
root causes of network soft-failures using TCP traces.
To fill this gap, we previously proposed an automated
diagnostic system based on supervised Machine Learning
(ML) algorithms and network fault signatures' created
using aggregated TCP statistics [8], [9]. In our system,
the ML algorithms are first trained using signatures that
we call as Normalized Statistical Signatures (NSS), which
are generated from collected packet traces. However, the
diagnostic capability of the system is limited by the
number of fault classes present in the training set. In the

YA signature is often defined as a collection of features, where each
of these features represents a single aspect of behavioural characteristics
in the network.

3276

20F
s e

60

150 200 250 300 350 400

50 100

(a) Healthy UD
20
40
'
60f | .. i
il | i A LT il ! i
50 100 150 200 250 300 350 400

(c) TCP timestamps error

L L
150 200 250 300 350

(e) Duplex mismatch Level 1

UD firewall causing delay

60

LEH I A) i L 18 L L
50 100 150 200 250 300 350 400 450

(i) Insufficient read and write buffers

JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

(b) Disabled SACK error

||

L L
100 150 200 250

350 400 450

(d) Window scaling error

300 350 400 450

(h) UD firewall causing packet loss

v [}t e
208 ; : SR : ;A § I § (=
40 | | 1 1 4

60 3 3 3 3 1

i
i
:
:

I I ik L L i i il It L
50 100 150 200 250 300 350 400 450

(j) Insufficient read buffer

Figure 1. Visualization of NSSs for a healthy UD and nine common UD soft-failures. Here, the columns of each figure represent 460 features of
the 70 NSSs. Each NSS occupies a row. Features have been normalized and scaled to [—6,6] C R and their values are represented by colored
pixels to project the scaled feature values to RGB space. This representation offers easy visualization and comparison. The images demonstrate that
the combination of features uniquely represents each fault and can be used as a “fingerprint” for diagnosis.

case of diagnosing an unknown fault, this often leads to
a false positive error. We have also found that the NSSs
contain large numbers of features, which could cause over
fitting of the classifier models, a problem known as the
“curse of dimensionality” [10].

As a step to compensate for the limitations encoun-
tered, we present a new hybrid classifier architecture that
extends the diagnosis capability of the system to both
previously known faults as well as new types of faults.
The hybrid classifier system combines unsupervised clus-
tering algorithms[11], [12] to analyze previously unknown
signatures to detect new faults and iterative training of a
supervised ML classifier for root-cause diagnosis.

We also present two new signatures called EigenNSS
and FisherNSS, both motivated by techniques used in
facial recognition applications. The new signatures trans-
form the NSSs to lower dimensions without sacrificing
useful information. In addition, FisherNSS strives to
maximize the ratio of the between-class scatter to the
within-class scatter for better classification results. We
perform a detailed comparison of performance between

©2014 ACADEMY PUBLISHER

both EigenNSS and FisherNSS with data gathered from
real-world networks. Preliminary results of the work have
been published in a conference paper [13]. Whilst the
published work only offer a limited discussion focused
just on EigenNSS, this publication significantly extends
the concept to introduce the FisherNSS. Additionally, this
publication offer much detailed discussion and perfor-
mance evaluation on both types of transformed signatures
as well the hybrid classifier system.

II. SYSTEM OVERVIEW
A. Normalized Statistical Signature (NSS)

In our work, we use a self-initiated controlled con-
nection between the diagnostic server and UD to collect
TCP packet traces. The collected traces are sent through
a feature extraction module. In this paper, we use 230
extracted features from each trace, which totals to 460
when both upload and download traces are combined.
Features extracted include cumulative totals of packet
types, payload characteristics, observation frequencies of
specific events, initial and final state parameters, delay

JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

Access | Userrequest STEHUEES
router diagnostic interface, ~ device
el e load user modules e
server
_activate data transfer Modules
user download

capture capture
module user upload module

Figure 2. Deployment of the diagnostic system over the access network
and operational overview.

based statistics, and TCP Boolean parameters. Various
other extracted features that was included can be found
in [14].

To standardize all the signatures, each of the ’faulty’
raw signatures are normalized against the healthy baseline
signature, which is obtained using a UD with optimal
system settings. The resultant feature vector is called the
Normalized Statistical Signature (NSS). Figure 1 shows
NSSs collected from UDs exhibiting 9 types (classes)
of faults and one ’healthy’?> UD. Throughout all 70
samples for each type of fault, unique feature patterns are
observed, providing the distinction needed for an effective
and reliable diagnosis.

Since an NSS contains a large feature set (460 features),
it theoretically enables a range of faults to be character-
ized through a single representation. However, as evident
from the Figure 1, not all features contribute equally for
the separability of the classes and even features within
the same class show variations due to the inconsistent
nature of the connection link. Having a large feature set
can also lead to over fitting of the data when training
a ML-based system; this consequently will lead to poor
generalization and classification accuracy. Therefore, the
dimensionality of the NSSs should be reduced while
preserving the important information to build an effective
diagnostic system.

In this study, we include two techniques to achieve
dimensionality reduction in NSSs. Principal Component
Analysis (PCA) is used to transform the NSS into a
new signature called EigenNSS whereas Fisher’s Linear
Discriminant Analysis (FLDA) is used to generate another
signature type called FisherNSS [15].

B. Operational Details of the Diagnostic System

1) Deployment: The diagnostic server is deployed as
an application on the access router as shown in Figure
2. The complexities that can affect the uniformity of the
captured packet traces can be eliminated by narrowing
down the path to the UD into an access link. Firstly,
upon initiation from the user, the modules needed for file
transfers and packet captures are loaded. Two TCP-based

21n this work, we define a ‘healthy’ UD as a device that receives the
maximum network performance level reasonably expected by a user.

©2014 ACADEMY PUBLISHER

3277

D Selected number of eigenvectors that account
for the highest variation

P Number of samples in signature set

m Number of features in each NSS (m = 460)

X m-dimensional feature vector of the training
NSS set

3] Mean of the training NSS set

A Mean centered training NSS set

Wpca Eigen matrix formed using a pre-determined D

number of eigenvectors, v

Opca EigenNSS is generated by projecting the mean
centered NSS onto the Eigen matrix (Opcp =
{el,eZ:H . 7ep})

Ppca Mean of the entire EigenNSS set

o, Mean of the EigenNSS$ for the it

S Between-class scatter

Sw Within-class scatter

VYELD Eigen matrix formed using a pre-determined D
number of eigenvectors, w

OFLD FisherNSS is generated by projecting

EigenNSS onto the Fisher matrix (OpLp

= {f11f21 e 7fp})

Pattern vectors of each class

Euclidean distance between the test sample with

each of the class pattern vectors

m Squared distance between the test NSS feature
vector sample and the mean of the training NSS
set

€f,PCA> €fFLD
O #,PCA> O f FLD

TABLE L
MATHEMATICAL NOTATION

data transfers of a fixed size of 20 MB file (an upload
and download) are conducted serially between the UD
and server. A file size of 20 MB was found, empirically,
to provide the best balance between signature accuracy
and collection time. A self-contained, portable packet-
capturing mechanism that does not require kernel manip-
ulations or installations is used to capture the packets. To
satisfy the privacy concerns, we limit the amount of traffic
captured and also control the content to be captured.
Finally, the captured TCP packet traces are sent to the
feature extraction modules where they are analysed and
extracted to obtain statistical attributes (features), known
as ‘raw’ signatures.

2) Operation: Figure 3 shows the operational stages
of the diagnostic system. There are three main stages that
the system operates in

1) Training stage

2) Diagnosis stage which also includes the
3) New class recognition stage.
During the training phase, the packet traces are colu-
vjlected from UDs with known faults induced. Statistical
attributes of these traces are extracted to form the raw
signature and given a class label. The raw signatures
are then normalized against the healthy performance
baseline to create the NSSs. The NSSs generated from
multiple classes are stored in a database and are used to
calculate the transformation matrices of the database. The
NSSs are projected onto either one of the transformation
matrices to create the transformed signatures, EigenNSS
and FisherNSS respectively. The transformed signatures
of each class are used to calculate the pattern vector
(ef) (Table I can be referred for the descriptions of the
mathematical symbols used throughout the paper) of that

collect training data
(multiple samples per fault)

v

extract statistical features

v

combine statistical features to
create the raw signature

v

normalize raw signatures

Normalized Satistical
Signature (NSS)

training NSS database

calculate transformation
matrix

v

project NSSs onto
transformation matrix
to create the
transformed signature

Transformed

JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

collect a trace for diagnosis

v

extract statistical features

v

combine statistical features to
create the raw signature

v

normalize raw signature

Normalized Satistical
Signature (NSS)

calculate the NSS distance
(M) to training NSS

yes no
sample is
highly distorted

Project NSSs on to transf.
matrix to create
the transformed signature

v

calculate the Euclidean

reliable diagnosis
is not possible

P distance (o) to each
known class

Signature

(EigenNSS/FisherNSS)

calculate the class pattern

vector for each fault class
(&)
v

choose NSS (A pgs)
and
fault class (A)
thresholds

Initial training
and
re-training process

no

v

classify sample into C'f?ss'fy Sart]ple as
unknown” and

the associated fault \
class store witho,___

add to the
training set &
re-calculate class € ¢

cluster unknown
signatures

cluster
estimation

v

clustering
algorithm for
exact cluster
associations

add to the
training set & v
calculate class g £ create a new class
if a cluster limit is
reached

Diagnosis and new class recognition process.
New classes, when they are identified, are added to
the known NSS database

Figure 3. Operational overview of the classifier system.

©2014 ACADEMY PUBLISHER

JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

particular class. Finally, two thresholds are chosen for the
system:
1) Anss for determining if a particular signature is valid,
and
2) Mg for determining class associations.
Once the system is trained, UDs that are suspected to
be faulty can be diagnosed by collecting packet traces
and sending them through the same feature extraction and
NSS generation process. Then, EigenNSS and FisherNSS
can be generated by projecting the NSSs onto either
one of the transformation matrices created during the
training stage. These transformed signatures are then used
to calculate the pattern vector (¢) and Euclidean distance
(o) of the pattern vector from each known class. The
NSS can also be used to calculate the square distance (1)
from the training NSS data set. Finally, depending on the
minimum Euclidean distance (oin) and square distance
(), one of the three possible outcomes is decided by the
system as follows
if 1 > Apgs then
The sample is highly distorted.
Reliable diagnosis is not possible.
else
if omin < Are then
The sample is classified to the class associated
with the minimum distance. The sample then
is added to the training NSS database
and the € of the class is recalculated
to include the new sample.
else
The sample contains a valid signature, but
it does not belong to any of the
known classes. Hence, the sample is
classified as an unknown class.
end if
end if

When the system detects a predetermined number of
unknown signatures, new class recognition phase begins.
This predetermined number is usually defined to be
twice the minimum threshold size that a given cluster
is accepted as a new class. These unknown signatures
are first stored in a separate database with their pattern
vectors. Then, these signatures are sent through a cluster
estimation algorithm [11] which determines (i) if the
data set has samples that can be clustered within the A
bound, and (ii) the number of clusters that can be created.
These clusters will be matched with their exact cluster
memberships with the assistance of a clustering algorithm,
which uses a fuzzy C-means clustering technique with
iterative optimization [12]. If any of the clusters reach
the minimum threshold size, they will be considered as
a new class and will be added into the training database.
The transformed signatures of the new class are sent to
the class pattern vector calculation while its NSSs are sent
to the classifier training database. Although new classes
can be added by calculating the class pattern vectors, the
system can be re-trained in a short time when it isn’t
performing any diagnostics if the training database is

©2014 ACADEMY PUBLISHER

3279

updated with the new NSSs. Re-training includes the new
class and improves the final accuracy of the system. The
system also prompts administrators that a new fault class
has been detected, and after investigative analysis of its
actual root cause, a class label can be created.

The rest of the paper is organized as follows. Section III
recaps some of the related work done by other researchers.
Section IV presents how the NSSs are transformed to
generate EigenNSS and in Section V, the creation of
the new signature, FisherNSS is discussed elaborately.
Section VI includes the training and diagnosis process
of the system. Finally, Section VII contains detailed per-
formance analyses of the systems comparing both types
of signatures used followed by the conclusion in Section
VIIL

III. RELATED WORK

Characterizing the behaviour of the network to model
a signature is an approach found mainly in network
applications with detection tasks. A signature is defined as
a collection of features (or attributes), each representing
a single aspect of the network’s behaviour. In a detec-
tion process, signatures provide the key to differentiate
“healthy” behaviours from the abnormal or faulty ones.
However, depending on a particular application, the gen-
eration process of a signature may vary to account for the
requirements and constraints. In order to find a suitable
network signature, investigations about several available
types of network signatures are carried out to maximize
the capability of our diagnostic system. In addition to that,
various existing dimensionality reduction techniques are
reviewed, weighing between their pros and cons.

A. Network signatures

This subsection shows a summary of the different types
of network signatures and their limitations in the con-
text of UD, soft-failure characterization. Firstly, network
signatures generated from flow-based characteristics have
been commonly used in online traffic classification as in
Roughan et al. [16] and IDSs as in Zhang et al. [17].
Kihara et al. [18], Hajji [19] and Thotta and Ji [6] have
used signatures created using the behavioral changes in
traffic flows for network fault detection. These applica-
tions focus on detecting abnormalities in the overall traffic
flow pattern of the network when compared with the
normal traffic flow. However, these flow-based signatures
are not suitable for UD diagnosis applications due to their
passive and continuous monitoring nature. Our application
requires diagnosis to be run on-demand when a user
experiences a network performance problem.

Another common approach is to use system logs from
devices or ’'reports’ compiled by the user. Aggarwal et
al. [20] and Reidemeister et al. [21] incorporated internal
system logs whereas Lee and Kim [22] used user-reports
to create their respective fault signatures. The usage of the
system logs not only brings up privacy concerns in public
networks but is also inconvenient for network operators as

3280

they have to gain privileged access to the UDs. Reports
generated by users may be unreliable if users have no
specific network knowledge. Although system logs and
user-reports can provide valuable information when gen-
erating a fault signature, we believe the challenges far
outweigh the benefits.

Communication protocols are another common source
of information to create network signatures. Popular pro-
tocols such as IP, TCP, UDP, and HTTP have often been
used because they are usually supported by most devices.
Dahmouni et al. [23], Manikopoulos and Papavassiliou
[24], and Wolfgang [25] extracted features from multiple
protocols, whereas other studies such as Gomes et al. [26]
and Chen et al. [27] have limited feature collection to a
single protocol. However, these proposed signatures have
been created to detect a very specific network problem
which doesn’t provide us with much flexibility for our
application. In the case of UD soft-failure detection, the
requirements are to be able to effectively characterize not
only a large number of faults, but also any new types
that are unknown to our system. Hence, these proposed
signatures with limited features can limit the ability to
capture valuable information needed to generalize the
signatures.

Our literature review has revealed that the existing net-
work signatures are unsuitable for our application as they
do not offer satisfactory solutions to characterize UD soft-
failures. Therefore, we propose a more comprehensive
signature to characterize UD soft-failures and analyse how
uniquely different the signatures are on different network
properties.

B. Complexity reduction

This subsection shows a summary of the different
types of dimensionality reduction techniques used by
other researchers and their limitations. Network signa-
tures generated from flow-based characteristics for traffic
classification such as the one illustrated by Zhang et. al.
[17] contain large amounts of data as they are collected
from one of China’s seven major backbone networks. The
complexity of their dataset was reduced by only capturing
packet headers, which surprisingly still contain excessive
amount of data for a whole day. For further complexity
reduction, each day is divided into 24 hours where data
is only captured in the first minute for each hour. Due
to the on-demand requirement, this reduction method is
deemed unsuitable for our application.

Clustering algorithms are commonly used in reducing
the complexity of a large data set. Vaarandi proposed
a density-based approach clustering [28] to reduce the
amount of data (signatures from system log files) required
by a support person to evaluate the behaviour of the
system. In a density-based clustering, clusters are usually
defined as areas of higher density than the remaining data
set. The algorithm consist of three steps which include (i)
data summarization, (ii) building cluster candidates, using
the summary information collected and finally, (iii) cluster
selection based on the candidates. This method not only

©2014 ACADEMY PUBLISHER

JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

clusters data into regions based on frequent patterns from
the log files but also extracts the static parameters that are
unique to the system.

In other domains, Fisher’s Linear Discriminant (FLD)
[15] is used to reduce the dimensionality of image data
sets. This method is also very versatile in overcoming
inconsistencies and variances in an image (eg. lighting
variations in facial recognition). FLD provides linear
class separation in huge data sets which helps simplify
classification process.

Our complexity reduction method was greatly mo-
tivated by how well facial recognition methods have
performed in their respective fields and we were inspired
to try these methods on our generated signatures.

IV. EIGENNSS: NSS TRANSFORMATION USING
PRINCIPAL COMPONENTS

To overcome the challenges with having high dimen-
sionality in NSSs, we searched for a way to emphasize
on significant global features that contain a maximum
amount of information. Dimensionality reduction can be
achieved by firstly finding the principle components (i.e
eigenvectors of the covariance matrix) of the distribution
of NSSs. Then, these eigenvectors can be ordered accord-
ing to the amount of variation among the NSSs. Finally,
the NSSs are projected onto a selected number (D) of
eigenvectors that accounts for the highest variation. These
projections are called “EigenNSS” which represent most
of the information from the original samples in a D-
dimensional space.

A. Generating EigenNSS

The following subsection provides details of the
EigenNSS generation and calculation process. Consider
a training NSS set of X;, X2, ..., X, where z is a m-
dimensional feature vector. For example, the set of NSS
shown in Figure 1 has 70 samples for each of the 10
classes (p =70 x 10 =700), in which each of them has 460
feature vector (m = 460). Principal Component Analysis
(PCA) can be performed either on co-variance matrix or
on correlated matrix and the choice usually depends on
the variance of features. Correlation matrix is preferred
when the scales of the features are significantly different
from one another. When the scales of the features are
similar, the covariance matrix is preferred, as the correla-
tion matrix will lose information when standardizing the
variance. We have chosen to perform PCA on covariance
matrix since features in NSSs are already normalized and
approximately have similar scales.

The mean of the NSSs can be found by

'y
b= - X
pk:lk

The training NSSs are then mean centered by

Xi:Xi7<b

JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

5
10
-200
15
20 -400
5 10 15 20 25 30

transformed features

(a) Healthy UD

signature
o

200

o

S

—-200

signature
& 2

-400

S
S

10 15 20
transformed features

(c) TCP timestamps error

8000
6000
4000
2000

signature
S (4]

5

0
—-2000

S
S

10 15 20
transformed features

(e) Duplex mismatch Level 1

1000

signature

-1000

5 10 15 20 25 30
transformed features

(g) UD firewall causing delay

S
S

—-200

signature
>

o

-400

™
=

5 10 15 20 25 30
transformed features

(i) Simultaneous insufficient read-write buffer

3281

2000

1000

signature

-1000
5 10 15 20 25 30

transformed features

(b) Disabled SACK error

2000
1000

5000
-5000

signature

transformed features

(d) Window scaling error

signature
o

10 15 20
transformed features

(f) Duplex mismatch Level 2

2000

signature
o

-2000

.
15 20 25 30
transformed features

(h) UD firewall causing packet loss

500

-500

signature

-1000

5 10 15 20 25 30
transformed features

(j) Insufficient read buffer

Figure 4. Comparison of EigenNSSs for common UD soft-failures.

where x, is the mean centered m-dimensional feature
vector of the it" instance. The resultant matrix A = {x1,

X9, .., ip} has the dimensions of m x n and used to
calculate covariance matrix Aoy Aeoy 1S then subjected
to PCA where eigenvectors, v; and the corresponding
eigenvalues n; are determined by solving a well-known
singular value decomposition (SVD) problem. Then, a
pre-determined D number of eigenvectors, v that are
arranged from the highest eigenvalue, n are selected to
create the Eigen matrix which has the dimensions of m x
D. Finally, EigenNSSs are created by projecting the mean
centered NSS matrix, A onto the Eigen matrix, Wpca as

Opca = Upca’ A

where Opca = {e1, €, ..., e,} and e is a D-dimensional
EigenNSS.

Figure 4 shows the comparison of EigenNSSs for
various types of common UD faults with D=30. Note that
the figure only shows 25 signature samples per class for
clarity. As shown in the figure, the dimensionality of NSSs
has been reduced while preserving the most important
information for class separation. This is clearly visible
as the EigenNSS shows significant differences between
classes compared to the NSSs. However, it can be seen

©2014 ACADEMY PUBLISHER

that the EigenNSS samples within the same classes can
vary due to the inconsistent nature of the network links.

V. FISHERNSS: NSS TRANSFORMATION USING
FISHER’S LINEAR DISCRIMINANT ANALYSIS

As shown in the previous section, EigenNSS reduced
the dimensionality of NSS. However, to account for the
errors in data collection and the inconsistent nature of
the networks, separation between these unwanted infor-
mation is needed for a better classification outcome. This
section shows the motivation and generation process of
FisherNSS, a new transformed signature.

A. Fisher’s Linear Discriminant

The inconsistent nature of the network affects the
extracted features and may lead to a poor fault detection.
These inconsistencies (noise terms) are embedded inside
the data which makes it difficult to distinguish from the
actual information. PCA used in EigenNSS calculates the
eigenvalues that explain most of the variation across the
data; in this case it would operate per feature vector
and does not take account of class labels. As previously
mentioned, Fisher’s Linear Discriminant (FLD) aims to
maximize Fishers discriminant ratio, i.e. it maximizes the

3282

1
5
10
15
20 -1
5 10 15 20 25 30

transformed features

signature
o

(a) Healthy UD

signature

10 15 20
transformed features

(c) TCP timestamps error

signature

10 15 20
transformed features

(e) Duplex mismatch Level 1

signature

20

5 10 15 20 25 30
transformed features

(g) UD firewall causing delay

10
15 0
20

signature

signature
D o= =
o o o o

5 10 15 20 25 30
transformed features

(i) Simultaneous insufficient read-write buffer

JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

20

signature
o

5 10 15 20 25 30
transformed features

(b) Disabled SACK error

signature

10 15 20
transformed features

(d) Window scaling error

signature

transformed features

(f) Duplex mismatch Level 2

signature

5 10 15 20 25 30
transformed features

(h) UD firewall causing packet loss

200
200
400

-600
-800

10 15 20

5 10 15 20 25 30
transformed features

(j) Insufficient read buffer

Figure 5. Comparison of FisherNSSs for common UD soft-failures.

distance between classes and provides linear separabil-
ity between classes, to facilitate correct fault diagnosis.
However, to guarantee within class scatter matrix in FLD
not to become singular, we require at least x + ¢ samples
(x=number of dimensions, c=classes) and in the case of
NSS, at least 475 samples per class. This requirement
reduces the usability of FishersNSS to more mature
systems with large data sets. To reduce the minimum
sample requirement, we use a well-established two-phase
framework of PCA plus FLD where PCA first reduces the
dimensions of the feature space, and then apply Fisher’s
Linear Discriminant Analysis (FLD) for further reduction
and between class separation [29], [30].

FLD is an example of a class specific method, that
attempts to “shape” the scatter of feature values to fa-
cilitate reliable classification. To illustrate the benefits
of a class specific linear projection, we construct a set
of 10 2-dimensional (n=2) sample points. In Figure 6,
a comparison of both PCA and FLD for a two-class
problem is shown by projecting the constructed sample
points from 2D down to 1D respectively. Comparing the
projections, PCA smears the classes together so that they
are no longer linearly separable in the projected space.
Although the total scatter of FLD is smaller than of

© 2014 ACADEMY PUBLISHER

0.5¢

Feature 2

+ Class 1
o Class 2

Feature 1

Figure 6. A comparison of principal component analysis (PCA) and
Fisher’s Linear Discriminant (FLD) for a two class problem.

PCA, FLD achieves greater between-class scatter, and
consequently results in better classification.

B. Generating FisherNSS

The following subsection illustrates how the FisherNSS
is generated including the calculation process. Assuming
we have a training EigenNSS set, Opca of €1, ez,..., €,

JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

, where e is a D-dimensional transformed feature vector.
For example, the set of EigenNSS shown in Figure 4 has
N=25 samples for each of the 10 classes (p = 25 x 10
= 250), in which each of them has D=30 features. The
mean of the entire EigenNSS set can be found by

12
Ppcp = —Zek
gt

The mean of the EigenNSS for the i class can be found
by

where ®; is the mean EigenNSS of class F; and N; is the
number of samples in class F;. The between-class scatter
matrix can then be computed by

Sp = Z(‘I)z — Dpea) (P — (I)PCA)T

i=1

and the within-class scatter matrix by

Sw=>_ (er—i)(er — ;)"

i=1le,€E;

The optimal projection Wy is chosen as the matrix
with orthonormal columns (eg. eigenvectors, w) which
maximizes the ratio of the determinant of the between-
class scatter matrix to the determinant of the within-class
scatter matrix, i.e.,

WTSEW]|
WL Sy W|

However, only a pre-determined D number of eigen-
vectors that are arranged from the highest eigenvalue,
are selected to create the Fisher matrix which has the
dimensions of D x D. Finally, FisherNSS are created by
projecting the EigenNSS matrix, Opca onto the Fisher
matrix, Wg p as

Wopt = arg max

T
Orp = Yrp~ Opca

where Opp = {f1,fs,....f,} and f is an D-dimensional
FisherNSS.

Figure 5 shows the FisherNSSs for various types of
common UD faults with D=30. Similarly, only 25 signa-
ture samples per class are shown for clarity. As evident
from the figure, the signature samples in each class exhibit
very little variation and appear to reduce the effects of
network inconsistencies on the extracted signatures.

VI. TRAINING AND DIAGNOSIS OF REDUCED
SIGNATURES

A. Training

The following subsection shows the diagnostic system
training process using EigenNSS and FisherNSS respec-
tively, where the pattern vectors (ey) of each class are
calculated. We assume the EigenNSS matrix, ©pca and
FisherNSS matrix, ©p p contains n signature samples
from multiple classes (faults, f). The D-dimensional class

©2014 ACADEMY PUBLISHER

3283

pattern vector, €5 is calculated by averaging the reduced

signatures as
n
1
€fPCA = — E €
n
k=1

1 n
€fFD = ka:
k=1

where these pattern vectors, €7 are used during the diag-
nosis stage to calculate the distance between any given
unknown (test) signatures. These distances are used to
determine the best class fit of the unknown signatures.

B. Diagnosis

1) Known Faults: In this subsection, the classification
criteria required for the diagnosis of known faults are
shown. The simplest method of determining the class
association of a test sample is to calculate the Euclidean
distance, o between e and f respectively with each of the
class pattern vectors as

2
ofpca = ||e —efpcall
2
ofrp = |[f — €7 rpl|

Euclidean distance assumes the data to be isotropically
Gaussian. Euclidean distance was used over more com-
putationally expensive measures such as Mahalanobis
distance because our previous analysis of NSSs have
shown that features are largely uncorrelated and clearly
follow a Gaussian distribution[31]. The test sample is
classified and associated with a class, f when its re-
spective minimum Euclidean distance, oy, is below the
chosen fault class threshold, A¢.

Due to errors in data collection and the inconsistent
nature of networks, some of the collected packet traces
can be distorted. This may lead to a false detection,
where the erroneous NSSs generated from these distorted
packet traces are wrongly classified. Hence, we introduced
another term for a more reliable outcome which is the
squared distance, ;. between the NSS feature vector of
the test sample, y and the mean of the training NSSs, ®.

2
p=ly -2

The test sample is considered valid only if the minimum
squared distance is less than the chosen NSS threshold,
)\nss-

Depending on the minimum values of oy and p, the
outcome of the diagnosis process is determined following
the criteria previously mentioned in Section I.

2) Unknown faults: Here, we present the new class
recognition process for the diagnosis of unknown faults.
A test signature samples is classified as “unknown” if
it contains a valid signature but does not belong to any
of the known classes. These unknown samples are sent
through a cluster estimation algorithm to determine the
number of clusters that can be created and whether or
not, the samples can be clustered within the A\ bound.

Assume that we have a set of n unknown signature
samples {x1,x32,...,x,} in the database. We consider

3284

each of the unknown samples as a potential cluster center
and its respective measured potential, F; as a function
of its distances to all the other unknown samples. The
measure of potential for the i™ unknown samples are

given as
n
P, = § e llzi—x;l1?
j=1
where
4
o= -
r2

and r, is a positive constant, corresponding to the radius
defining a neighbourhood, where unknown samples out-
side this radius have limited influence on the potential.
After the potential of every unknown sample has been
computed, we choose the unknown sample with the
highest measured potential as the first cluster center.

Let] be the location of the first cluster center and
Py be its measured potential value. The potential of each
unknown sample x; is then revised by subtracting an
amount of potential as a function of its distance from
the first cluster center. The revised potential of the i
unknown sample can be calculated as

P, = P — Pre fllz—aill

h
where 4

8=
T

and 7, is a positive constant, corresponding to the radius
defining the neighbourhood that will have measureable
reductions in potential. The constant 7, is set to be
somewhat greater than r,, to avoid cluster centers being
too closely spaced together. A good choice of values is
ry, = 1.57,. The unknown samples near the first cluster
center will have greatly reduced potential, and are unlikely
to be the source of the next cluster center. Therefore, the
unknown sample with the highest remaining potential is
selected to be the second cluster center.

In general, the process of acquiring new cluster centers,
xj, is repeated using the general formula for revising
potentials as

k]2
P, = P, — Pre”llziaill

following these criteria:
if P > €P; then
Accept z}, as a cluster center and continue.
else if P} < eP then
Reject z7, and end process.
else
Let dpin < shortest distances between xj and
all previously found cluster centers.
if dm'" + > 1 then
Accept xk as a cluster center and continue.
else
Reject x), and set the potential at x}, to 0.
Select the unknown sample with the
next highest potential as the new x},
and re-test.

Pk

©2014 ACADEMY PUBLISHER

JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

end if
end if

Here € represents the threshold for the potential above
which we will definitely accept the unknown samples as
a cluster centers. Whereas ¢ represents a threshold below
which we will definitely reject the unknown samples.

Once the cluster data are obtained, they are sent to
a clustering algorithm to determine the exact cluster
membership. This algorithm uses Fuzzy C-Means (FCM)
clustering with iterative optimization that minimizes the
cost function

J= ZZILmek _”ZH

=1i=1

where n is the number of unknown test samples, c is the
number of clusters (obtained from cluster estimation), xy,
is the k™ unknown sample, ¢; is the i cluster center, ik
is the degree of membership of the k™ sample in the i™
cluster, and m is a constant greater than 1 (typically m =
2). The degree of membership, s, is defined by

1
T
k 7

2 (ze=oy1)

2/(m—1)

FCM will converge to a solution for v;, that is either a
local minimum or a saddle point of the cost function, .J.
The performance of the FCM solution depends strongly
on the choice of the initial values used (eg. the number
of clusters, ¢ and the initial cluster centers, v;), which are
taken from the cluster estimation algorithm. Finally, the
exact cluster membership can be computed by using the
final iteration value of v;.

VII. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the
system and analyse its diagnostic capability.

A. Data Set

Collecting data from actual user complaints is challeng-
ing considering the amount of time required to collect
a sufficient number of samples, and resources needed to
manually identify the issues. In order to recreate a realistic
fault detection scenario, we designed a fault emulator
module to reproduce commonly found problems in UDs.
The fault emulator is installed in test computers connected
to the live university network in multiple locations. This
allows us to demonstrate the viability of the system in
real computing environments, where cross traffic and
congestion is present. This method of emulating faults
offered an efficient way of collecting accurate data with
minimal resources.

A total of 16 common UD faults that can affect
network performance are emulated as listed in Table II.
By including the “Healthy” UD case, a total of 17 classes
are formed and used in this evaluation. Over the entire
evaluation period, we collected 12685 traces from UDs
emulating these 17 fault cases, each having approximately

JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

Fault Description

CF1 Healthy

CF2 Disabled SACK error

CF3 Insufficient write buffer

CF4 Insufficient read buffer

CF5 Simultaneously insufficient read & write buffer
CF6 TCP timestamps are not working/in error

CF7 Window scaling error

CF8 Limited reordering threshold

CF9 Link-UD speed mismatch level 1

CF10 Link-UD speed mismatch level 1 & duplex mismatch
CF11 Link-UD speed mismatch level 2

CF12 Link-UD speed mismatch level 2 & duplex mismatch
CF13 UD firewall causing packet loss

CF14 UD firewall causing packet delay

CF15 Overloaded UD CPU

CF16 Overloaded UD memory

CF17 UD HDD i/o overloaded - faulty

TABLE II.
KEY: LIST OF FAULTS

equal amounts (750) of samples. Data was also collected
from UDs that operates with 8 different flavours of TCP,
as they contribute to a variation in connection behaviour.

B. System Performance

The system is initially trained using only 13 classes
as our evaluation needed to consider unknown faults. The
faults CF2, CF8, CF10, and CF17 are kept as the unknown
faults (refer to Table II), and are introduced at random
intervals into the system during the testing stage. The data
sets of the 13 classes are randomly divided into training
and testing groups. We conducted the experiment over
8 iterative sessions and averaged the results in order to
achieve statistical robustness.

The cluster threshold to add an unknown fault as a
known fault are set to be equal to the number of per-
class training samples used to initiate the system (e.g. if
the system is initially trained with 50 samples per class,
an unknown class is added as a known fault when its
cluster membership reaches 50). This cluster membership
minimum threshold is a design choice and will dictate the
confidence level in detecting the existence of a new fault.
Having a large cluster membership before categorizing
them as a new fault improves the reliability of the system
and yet, increases the time taken to offer users with a
valid diagnosis.

Figure 7 shows the overall accuracy of the system in
recognizing the testing samples which were previously
unseen. Figure 8 shows the overall confusion rate of
the system, which indicates the ratio between wrongly
classified samples to the total samples. For both figures,
n represents the number of samples used for each class
during training, and the x-axis shows the dimensionality
(D) of the EigenNSS and FisherNSS respectively. From
Figure 7 and 8, we see that the system using FisherNSS
managed to achieve a higher overall accuracy compared to
the EigenNSS for any D transformed signature features
and n-values. Any additional features used to construct
the transformed signature only add a marginal perfor-
mance gain. Noting that the original NSS contained 460

©2014 ACADEMY PUBLISHER

3285

100— T T T

©
o

@©
(=]

~
o

o2}
OA

jox
o
T

Percentage overall accuracy

—4A— EigenNSS, n=25
—v— EigenNSS, n=50
—e— FisherNSS, n=25 1
—e— FisherNSS, n=50

N
o

30— | | | | | | | | |
10 20 30 40 50 60 70 80 90 100
Reduced feature set

Figure 7. Overall accuracy of the system against dimensionality (D)
of the reduced signatures. Each graph represents a different per-class
training dataset size.

features, these results show a successful dimensionality
reduction of 96.74%. Figure 7 shows that as the number
of samples used for training increases, the system per-
formance improves to a saturation limit. The overall ac-
curacy gap between both EigenNSS-ED and FisherNSS-
ED systems become closer as the number of training
samples increases. Most importantly, the FisherNSS-ED
system performs better than the EigenNSS-ED system
when lesser numbers of training samples are used. This
improvement is explained by adding to the system, and
retraining with, correctly classified test samples. An
overall accuracy of 80% and 20% confusion rate was
achieved using EigenNSS with n=25 samples per class
and D=15 reduced features for the 17 class system. Using
FisherNSS, an overall accuracy of 97% and 3% confusion
rate was achieved. FisherNSS is deemed to be the better
system due to the fact that it requires lesser number of
training samples to obtain a higher overall accuracy.
Table III summarizes the performance of the 17 classes
used in our system. Metrics used in the table are as
follows:
1) True-Positive Rate (TPR): Members of class X cor-
rectly classified as belonging to class X.
2) False-Positive Rate (FPR): Members of other classes
incorrectly classified as belonging to class X.
3) True-Negative Rate (TNR): Members of class X
incorrectly classified as belonging to other classes.
4) False-Negative Rate (FNR): Members of class X
incorrectly classified as not belonging to class X.
Table III also shows that, all different types of faults
can be uniquely identified independently with high-level
of accuracy as suggested by high TPR and TNR. For
example, faults CF6, CF7, CF12, CF13, CF14, and CF15
using both EigenNSS and FisherNSS have high TPR of
about 90% and above. Most of the faults show a low FPR
and FNR which indicates that the classifier has a low false
detection rate.
Faults that were kept unknown to the system such as
CF2, CF8, CF10, and CF17 only have a slightly smaller

3286

—— EigenNSS, n=25
—v— EigenNSS, n=50
—a—FisherNSS, n=25| |
—e— FisherNSS, n=50

Total confusion rate

ol | N n n n
10 20 30 40 50 60 70 80 90 100

Reduced feature set

Figure 8. Overall confusion rate of the diagnostic system against
dimensionality (D) of the reduced signatures for different per-class
training dataset size (n).

TPR compared to other faults. This shows that the system
has a high detection accuracy of unknown faults.

When EigenNSS are used, some of the faults such as
CF1, CF2, CF3, CF5, CF8, CF9, and CF11 have relatively
low TPR which makes them less likely to be correctly
classified belonging to its respective class. However in
some fault cases such as CF6, CF7, CF13, and CF15,
EigenNSS has a better TPR than FisherNSS.

Figures 9 and 10 show the confusion matrix of the
EigenNSS-based and FisherNSS-based system respec-
tively. A confusion matrix is a typical form of visualiza-
tion to observe the performance of an algorithm, in this
case, the multiclass classifiers. The rows represent target
or expected (actual) classes and the columns represent the
predicted classes. The diagonal elements of the matrix
represent the correct classifications whereas the other
indices represent the incorrect instances. The ratio of
each instance is color coded for better visualization.
In Figure 10, the FisherNSS-based system manages to

JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

target class

1
0.8
0.6
0.4
0.2
0

1234567 891011121314151617
predicted class

—_ ol L
NOORPWN—-0OOONOOUIRAWN =

Figure 9. Confusion matrix for the 17 classes in EigenNSS-based
diagnostic system.

successfully avoid large misclassifications, satisfying a
primary requirement of the system. However, Figure 9
shows a poorer performance due to the greater chance
of misclassifications between classes for the EigenNSS-
based system.

The proposed FisherNSS-based Euclidean distance
classifier system (FisherNSS-ED) and the previously in-
troduced systems (EigenNSS-ED and NSS-ED) are tested
against a Naive Bayes multiclass classifier that used the
original NSS data set (NSS-NB). The system is trained
with all 17 classes at the beginning using similar training
and testing sets of data. Figure 11 compares the overall
system accuracy between the 4 systems, where the x-axis
represents the number of training samples used. For any
given number of training samples used, the figure shows
that both EigenNSS-ED and FisherNSS-ED systems per-
form much better than the NSS-ED and NSS-NB systems.
This is due to “over fitting” of classifiers used in the 460
feature NSSs, leading to degraded performance.

Fault - TPR - - FPR - - TNR. - FNR -
EigenNSS FisherNSS = EigenNSS FisherNSS = EigenNSS FisherNSS EigenNSS FisherNSS
CF1 78.3 90.6 21.7 9.4 96.6 99.3 34 0.7
CF2 65.0 92.3 35.0 7.7 97.8 99.9 22 0.1
CF3 66.5 89.1 33.5 10.9 99.1 99.2 0.9 0.8
CF4 82.1 99.0 17.9 1.0 97.5 99.3 2.5 0.7
CF5 72.8 91.9 27.2 8.1 98.7 99.9 1.3 0.1
CF6 100 99.7 0 0.3 99.7 99.9 0.3 0.1
CF7 97.1 95.5 2.9 4.5 99.9 100.0 0.1 0.0
CF8 60.9 98.5 39.1 1.5 97.6 99.4 24 0.6
CF9 75.4 97.1 24.6 2.9 99.3 100.0 0.7 0.0
CF10 82.0 100 18.0 0 97.8 99.9 2.2 0.1
CF11 75.4 100 24.6 0 99.9 99.8 0.1 0.2
CF12 92.0 95.1 8.0 4.9 98.1 99.9 1.9 0.1
CF13 99.1 98.9 0.9 1.1 99.9 99.8 0.1 0.2
CF14 100 100 0 0 100 100.0 0 0.0
CF15 93.5 90.8 6.5 9.2 99.5 99.8 0.50 0.2
CF16 80.8 91.9 19.2 8.1 98.9 99.6 1.1 0.4
CF17 83.6 99.4 16.4 0.6 99.9 99.7 0.1 0.3
TABLE III.

PER-CLASS ESTIMATION PERFORMANCE OF THE EIGENNSS AND FISHERNSS BASED DIAGNOSTIC SYSTEMS AT D = 15 ANDn = 25

©2014 ACADEMY PUBLISHER

JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

target class
QOWOONOUITRWN =

—_
—_

12345678 91011121314151617
predicted class

Figure 10. Confusion matrix for the 17 classes in FisherNSS-based
diagnostic system.

Another important performance criteria for a system
with iterative training process is the time taken to train
the system and evaluate a new sample (diagnosis). We

100

90

851

801

Percentage overall accuracy

—+—NSS-ED
751 —s— EigenNSS-ED [
—e— FisherNSS-ED
—v—NSS-NB
70 | ! !
0 20 40 60 80 100 120 140 160 180 200
Number of signature samples
Figure 11. Comparison of overall accuracies of diagnostic systems.

LF -7 —— EigenNSS training (~24ms-435ms)
107 _--7 —— NSS-NB training (~16s-17s) E
r ——NSS-ED training (~100ms-932ms)
—— FisherNSS training (~33ms-365ms)
10 ¢ - - - EigenNSS diagnosis (~4ms-66ms) |3
- - - FisherNSS diagnosis (~4us-59us)

- - - NSS-NB diagnosis (~90ms—110ms)
10 ¢ - - =NSS-NB diagnosis (~14ms-100ms)

Time taken (s)

| | | | | |
20 40 60 80 100 120 140 160 180 200
Number of signature samples

Figure 12. Training and single sample diagnosis time variations against
increasing training dataset size for classifiers.

©2014 ACADEMY PUBLISHER

3287

included this into the experiment to compare how both the
total training time and a single diagnosis time vary with
training samples per class for the previously mentioned
classifiers. The NSS-NB classifier requires a much longer
training time compared to the other classifiers as justified
in Figure 12. The training time for the EigenNSS-ED
classifier (24 ms-435 ms) is faster than the FisherNSS-
ED classifier (33 ms-365 ms) when n = 10 — 200.
Since both the training times are in the order of mil-
liseconds, this suggests that iterative training does not
impact the practical usability of either the EigenNSS-
ED and FisherNSS-ED systems. The diagnosis time for a
FisherNSS sample is in the order of microseconds (4 ps-
59 us), which is significantly faster than the other types
of signatures, despite the fact that FisherNSS calculation
involves more steps. This is followed by the EigenNSS-
ED system which have a diagnosis time of about 4 1s-66
us. This shows that both systems are not limited to an
on-demand diagnosis, but could also be considered for
“real-time” diagnosis applications. Real-time applications
are often required to provide guaranteed response within a
strict time constraint, usually in the order of milliseconds
and sometimes even microseconds.

VIII. CONCLUSIONS

We have proposed and evaluated an automated UD soft-
failure diagnostic system based on a single multi-class
classifier design. The system is capable of diagnosing
known and unknown faults by combining both supervised
and unsupervised machine learning (ML) techniques. We
have also presented another signature transformation tech-
nique to reduce the dimensionality of NSSs and also to
remove network inconsistencies (unwanted information)
from EigenNSS. This new transformed signature, Fish-
erNSS aims to maximize the ratio of the between-class
scatter matrix to the within-class scatter matrix to improve
the classification process.

The system was evaluated by diagnosing 17 UD faults
collected over a live campus network, achieving an overall
accuracy of up to 97% using FisherNSS. When using
FisherNSS, faults such as CF4, CF6, CF7, CF8, CF9,
CF10, CF11, CF12, CF13, CF14, and CF17 have a high
True Positive Rate of about 95% and above. We have also
achieved a dimensionality reduction of 96.74% and low
confusion rate between classes. Although the EigenNSS
classifier have the shortest training time of about 24 ms-
435 ms, the FisherNSS classifier is only marginally slower
at about 33 ms-365 ms. Most importantly, FisherNSS
samples have the shortest diagnosis time, in the order of
microseconds of about 4 us-66 ps compared to all the
other types of samples.

This work provides the foundation to extend the sys-
tem to a more sophisticated network environment with
thousands of users, diverse client platforms and complex
traffic patterns.

REFERENCES

[1] S. Sundaresan, W. de Donato, and N. Feamster, “Broad-
band Internet Performance: A View From the Gateway,”

3288

(2]

(3]

(4]

(5]

(6]

(7]

(9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp.
134-145, Aug. 2011.

R. Maxion and F. Feather, “A Case Study of Ether-
net Anomalies in a Distributed Computing Environment,”
IEEE Trans. Rel., vol. 39, no. 4, pp. 433 —443, Oct. 1990.
M. Mathis, J. Heffner, and R. Reddy, “Web100: Extended
TCP Instrumentation for Research, Education and Diagno-
sis,” ACM SIGCOMM Computer Communication Review,
vol. 33, no. 3, pp. 69-79, 2003.

S. Shalunov and R. Carlson, “Detecting Duplex Mismatch
on Ethernet,” in Proceedings of PAM 05. Boston, MA:
Springer-Verlag, Berlin, Oct. 2005, pp. 135-148.

C. Callegari, S. Giordano, M. Pagano, and T. Pepe, “Be-
havior Analysis of TCP Linux Variants,” Comput. Netw.,
vol. 56, no. 1, pp. 462-476, Jan. 2012.

M. Thottan and C. Ji, “Anomaly Detection in IP Net-
works,” IEEE Trans. Signal Process., vol. 51, no. 8, pp.
2191-2204, 2003.

T. J. Hacker, B. D. Athey, and J. Sommerfield, “Experi-
ences Using Web100 for End-to-end Network Performance
Tuning,” in Proceedings of the 4th Visible Human Project
Conference, Nov. 2002.

C. Widanapathirana, Y. A. Sekercioglu, M. Ivanovich,
P. Fitzpatrick, and J. Li, “Automated Inference System for
End-To-End Diagnosis of Network Performance Issues in
Client-Terminal Devices,” Int. Jour. of Comput. Netw. &
Comm. (IJCNC), vol. 4, no. 3, pp. 37-56, 2012.

C. Widanapathirana, J. Li, Y. A. Sekercioglu,
M. Ivanovich, and P. Fitzpatrick, “Intelligent Automated
Diagnosis of Client Device Bottlenecks in Private Clouds,”
in Proceedings of IEEE UCC 11. Melbourne, Australia:
IEEE, New York, Dec. 2011, pp. 261 -266.

P. Sterlin, “Overfitting Prevention with Cross-Validation,”
Master’s thesis, University Pierre and Marie Curie (Paris
VI), Paris, France, 2007.

S. L. Chiu, “Fuzzy model identification based on clus-
ter estimation,” Journal of intelligent and Fuzzy systems,
vol. 2, no. 3, pp. 267-278, 1994.

J. C. Bezdek, “Fuzzy mathematics in pattern classifica-
tion,” PhD Dissertion, Applied mathematics center, Cornell
University, 1973.

C. Widanapathirana, J. Li, M. Ivanovich, P. Fitzpatrick,
and A. Sekercioglu, “Automated diagnosis of known and
unknown Soft-Failure in user devices using transformed
signatures and single classifier architecture,” in 38th An-
nual IEEE Conference on Local Computer Networks (LCN
2013), Sydney, Australia, Oct. 2013.

C. Widanapathirana, J. C. Li, M. V. Ivanovich, P. G.
Fitzpatrick, and Y. A. Sekercioglu, “Adaptive Statistical
Signatures of Network Soft-Failures in User Devices,” The
Computer Journal, p. bxt079, 2013.

P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces
vs. Fisherfaces: Recognition Using Class Specific Lin-
ear Projection,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 19, no. 7, pp. 711-720, 1997.

M. Roughan, S. Sen, O. Spatscheck, and N. Duffield,
“Class-of-Service Mapping for QoS: A Statistical
Signature-based Approach to IP Traffic Classification,” in
Proceedings of SIGCOMM IMC 04. Taormina, Italy:
ACM, New York, Oct. 2004, pp. 135-148.

B. Zhang, J. Yang, J. Wu, and Z. Wang, “MBST: Detect-
ing Packet-Level Traffic Anomalies by Feature Stability,”
Comp. J., Advance Access, published January 5, 2012,
Oxford, UK, 2012.

T. Kihara, N. Tateishi, and S. Seto, “Evaluation of Net-
work Fault-detection Method Based on Anomaly Detection
With Matrix Eigenvector,” in Proceedings of APNOMS 11.
Taipei, Taiwan: IEEE, New York, Sep. 2011, pp. 1 -7.
H. Hajji, “Statistical Analysis of Network Traffic for
Adaptive Faults Detection,” Trans. Neur. Netw., vol. 16,

©2014 ACADEMY PUBLISHER

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

no. 5, pp. 1053-1063, Sep. 2005. [Online]. Available:
http://dx.doi.org/10.1109/TNN.2005.853414

B. Aggarwal, R. Bhagwan, and T. Das, “NetPrints: Di-
agnosing Home Network Misconfigurations Using Shared
Knowledge,” in Proceedings of USENIX NSDI 09. Boston,
Massachusetts: USENIX Association, CA, USA, Apr.
2009, pp. 349-364.

T. Reidemeister, M. Jiang, and P. Ward, “Mining Un-
structured Log Files for Recurrent Fault Diagnosis,” in
Proceedings of IM 11. Dublin, Ireland: IEEE/IFIP, New
York, May 2011, pp. 377 -384.

S. Lee and H. S. Kim, “End-user perspectives of
internet connectivity problems,” Comput. Netw., vol. 56,
no. 6, pp. 1710-1722, Apr. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2012.01.009

H. Dahmouni, S. Vaton, and D. Rossé, “A Markovian
Signature-Based Approach to IP Traffic Classification,” in
Proceedings of MineNet 07. San Diego, California, USA:
ACM, New York, 2007, pp. 29-34.

C. Manikopoulos and S. Papavassiliou, “Network Intrusion
and Fault Detection: A Statistical Anomaly Approach,”
IEEE Commun. Mag., vol. 40, no. 10, pp. 76 — 82, Oct.
2002.

M. Wolfgang, Host Discovery with nmap, nmap.org, Palo
Alto, CA, USA, Nov. 2002.

J. V. Gomes, P. R. Incio, M. Pereira, M. M. Freire, and
P. P. Monteiro, “Exploring Behavioral Patterns Through
Entropy in Multimedia Peer-to-Peer Traffic,” Comp. J.,
vol. 55, no. 6, pp. 740-755, 2012.

Z. Chen, Y. Zhang, Z. Chen, and A. Delis, “A Digest
and Pattern Matching-Based Intrusion Detection Engine,”
Comp. J., vol. 52, no. 6, pp. 699-723, Aug. 2009.

R. Vaarandi, “A Data Clustering Algorithm for Mining
Patterns from Event Logs,” in IP Operations and Manage-
ment, 2003.(IPOM 2003). 3rd IEEE Workshop on. 1EEE,
2003, pp. 119-126.

J. Yang and J.-y. Yang, “Why can Ida be performed in pca
transformed space?” Pattern recognition, vol. 36, no. 2,
pp. 563-566, 2003.

G. Donato, M. S. Bartlett, J. C. Hager, P. Ekman, and T. J.
Sejnowski, “Classifying facial actions,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 21,
no. 10, pp. 974-989, 1999.

C. Widanapathirana, J. Li, M. Ivanovich, P. Fitzpatrick,
and Y. Sekercioglu, “Adaptive Signatures of Soft-Failures
in End-User Devices Using Aggregated TCP Statistics,” in
Proceedings of IEEE/IFIP IM 13. Ghent, Belgium: IEEE,
New York, May 2013.

Chathuranga H. Widanapathirana is a Ph.D candidate in
the Department of Electrical and Computer Systems Engineering
at Monash University, Melbourne, Australia. He is also a data
scientist working at Open Universities Australia specializing
in analytics and big data. He received his B.Eng degree in
Electronics with a major in Telecommunication Engineering at
Multimedia University (MMU), Malaysia in 2009. His research
interests include distributed cooperative networks, automated
machine learning systems, data driven intelligent systems and
end-user self-diagnostic services in multiuser networks.

X. Ang received the B.E degree in 2013 from Monash University
and now studying towards a postgraduate degree in Electrical
Engineering at the Department of Electrical and Computer Sys-
tems Engineering at Monash University, Melbourne, Australia

JOURNAL OF NETWORKS, VOL. 9, NO. 12, DECEMBER 2014

Jonathan C. Li received the B.E.in electrical and Electronic
Engineering in 2001, B.Sc. degree in Computer Science and
Information Technology Systems in 1999 from the University
of Western Australia, and Ph.D. in Telecommunication from the
University of Melbourne in 2010. He is currently a member
of the academic staff at the Department of Electrical and
Computer Systems Engineering of Monash University, Mel-
bourne, Australia. His research interests are optical performance
monitoring, routing in all-optical networks, network simulation
and modeling, and Wireless TCP/IP optimization.

Milosh V. Ivanovich fills the role of Senior Emerging Technol-
ogy Specialist within the Chief Technology Office of Telstra,
and is an Honorary Research Fellow at Melbourne and Monash
Universities in Australia. A Senior Member of IEEE, Milosh’s
interests lie in queuing theory, teletraffic modeling, performance
analysis of wireless networks, and the study and enhancement of
TCP/IP in hybrid fixed/wireless environments. Milosh obtained
a B.E. (Ist class Hons.) in Electrical and Computer Systems
Engineering (1995), a Master of Computing (1996) and a Ph.D.
in Information Technology (1998), all at Monash University.

Paul G. Fitzpatrick completed his Bachelor Degree in Electri-
cal Engineering at Caulfield Institute of Technology, Melbourne
in 1979 and his PhD in Electrical Engineering at Swinburne
University, Melbourne in 1997 in the teletraffic performance of
hierarchical wireless networks. Paul has over 30 years of experi-
ence working in the telecommunications industry and academia,
including 15 years at Telstra Research Laboratories working on
2G, 3G and 4G wireless networks. His research interests focus
on teletraffic modeling, quality of service, TCP performance
modeling and analysis of telecommunication networks

Y. Ahmet Sekercioglu is a member of the academic staff at the
Department of Electrical and Computer Systems Engineering of
Monash University, Melbourne, Australia. He has completed his
Ph.D. degree at Swinburne University of Technology, and B.Sc.,
M.Sc. degrees at Middle East Technical University, Ankara,
Turkey. He has lectured at Swinburne University of Technology,
Melbourne, Australia for 8 years. His recent research inter-
ests are distributed algorithms for self-organization in wireless
networks, application of intelligent techniques for multiservice
networks as complex, distributed systems.

©2014 ACADEMY PUBLISHER

3289

