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Abstract—We present an automated solution for rapid diag-
nosis of both known and unknown “soft-failures” in network
User Devices (UDs). A multiclass classifier is first trained with
the known faults and during diagnosis, the unknown faults are
clustered to determine the existence of a new fault. Then, in
an iterative process, the classifier is re-trained with the newly
detected fault. The system relies on 410 features long Normalized
Statistical Signature (NSSs) for fault characterization. Since, the
high dimensionality of the NSS can create model overfitting,
we propose EigenNSS, a transformed signature with lower
dimensions and minimum information loss.

The system is evaluated with live network data of 17 emulated
UD faults. The results show an overall detection accuracy of
97.2% with minimum false positives and dimensionality reduction
of 93.9%. Also, compared with the NSS, the EigenNSS has faster
training and diagnosis times suitable for on-demand as well as
real-time diagnostic applications.

I. INTRODUCTION

Root causes of the network performance problems expe-

rienced by the end-users can be traced to service provider

servers, backbone networks, access network, and User Devices

(UDs), i.e., devices used directly by an end-user to communi-

cate [1]. Performance management and fault diagnosis of these

network segments is a complex task and network operators

have relied on Network Monitoring Systems (NMS) to detect

the signs of network problems. However, the inference from

such signs to diagnose the root cause requires expensive

resources including intervention by skilled personnel. In recent

years, researchers have proposed automated diagnosis solu-

tions specially focused on core network, access network, and

servers where a problem can potentially affect large number

of users [2]. However, only a little attention has been given to

develop such diagnosis techniques for UDs.

Network failures have been commonly divided into two

main categories [3]: “hard-failures” and “soft-failures”. A

hard-failure is characterized by the loss of connectivity and

inability of the network to deliver any bandwidth to the user.

This type of faults are easily identified and resolved since if

unnoticed by the operator, users are sure to identify the lost

connection immediately. Soft-failures are less well-defined, but

the prevailing opinion in most of the literature is that soft-

failures are characterized by degraded performance (also ill-

defined), or the loss of network bandwidth. Soft-failures are

harder to detect and often require lengthy investigations to

identify the root causes. In this work, we define an “healthy”

UD, which is a device that receives maximum network perfor-

mance level reasonably expected by a user. Degraded network

quality from the baseline is defined as a soft-failure. Resolution

of such soft-failures are critically important for maintaining a

user’s Quality of Experience (QoE) [4].

Parameter misconfiguration in various protocol layers, often

as a result of overly conservative defaults in operating systems

have been found to be a common issue causing performance

bottlenecks [5]. In addition, hardware problems, new appli-

cation installations, NIC driver issues, kernel level software

problems, mismatch between system settings and the link [6],

and protocol implementation errors [7] have commonly been

found to cause soft-failures.

II. RELATED WORK

As a method to automate the diagnosis of soft-failures in

UDs, authors have previously proposed diagnostic systems

based on supervised Machine Learning (ML) techniques and

fault signatures [8], [9]. The ML algorithms in these systems

are first trained using signatures called “Normalized Statistical

Signatures (NSS)” generated from packet traces of controlled

Transmission Control Protocol (TCP) connections between

diagnostic server and UDs with known faults. Subsequently,

a trace collected from a UD suspected of suffering from per-

formance problems can be sent through the trained classifier

system identify the exact root cause. However, the diagnostic

capability of these systems was limited by the classes of faults

used during the training. Consequently, a previously unknown

fault cannot be diagnosed and often leads to a false positive.

Also, the NSSs contains large number of features to capture

for all possible types of UD faults. However, large feature

sets in ML algorithms can lead to overfitting of the classifier

models, a problem known as “curse of dimensionality”[10].

We carried out a detailed literature survey and did

not find comparable solutions for UD soft-failure diag-

nosis. Supervised-ML has been extensively used for net-

work related applications, specially in intrusion detection

systems[11], traffic classifications[12], anomaly detection[13],

and source identification and system fingerprinting [14]. Re-

cently, unsupervised-ML has gained popularity in network

applications and has been used in intrusion detection [15],
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IP traffic classification [16]. However, hybrid techniques that

combine both supervised and unsupervised ML [17], [18] have

not been studied extensively in networking domain, specially

as a failure diagnosis tool.

In this paper, we propose a new single classifier architecture

that combines supervised-ML with unsupervised-ML to create

a known and unknown fault diagnostic system. Also, we

present EigenNSS and its creation process which, transforms

the NSSs to lower dimensions without losing meaningful

information. We also perform a detailed analysis of system

performance with data gathered from real-world networks.

The rest of this paper is organized as follows. Section III

presents the operational details of the diagnostic system.

Section IV discusses how the signatures of UD failures are

created. In Section V, we present how the NSSs are trans-

formed to create EigenNSS and in Section VI, we explain

the training and classification criterion. Finally, Section VII

contains detailed performance analysis of the system followed

by the conclusions in Section VIII.

III. OPERATIONAL DETAILS OF THE DIAGNOSTIC SYSTEM

A. Deployment

The diagnostic server is deployed as an application on the

access router/server at the edge of the network administrator

domain as shown in the Figure 1. This narrows down the path

to the UD to an access link and eliminates complexities that

can affect the uniformity of captured packet traces. Upon a

user request, first, the modules needed for the file transfers and

packet captures are loaded. Then, packets from an upload and

a download file transfer is captured by the capture modules.

B. Operational overview

The Figure 2 shows the operational stages of the diagnostic

system. The system operated in three main stages: (i) training

stage, (ii) diagnosing stage, and (iii) new class recognition

stage where in Figure 2, these stages are distinctly color coded.

During the training stage, the packet traces are collected

from UDs known to suffer from a particular fault. In this

system, each fault is considered a unique class. Statistical

attributes of these traces are then extracted from the packet

traces and these extracted features together with class label

is called the “raw signature”. These raw signatures are then

normalized using the expected performance baseline to create

the NSS. The NSSs from multiple classes are stored in a

Fig. 1. Operational deployment of the diagnostic system.

database and these NSSs are used to calculate the eigen matrix

of the database. The NSSs are projected on to a selected

number of principle components of the eigen matrix to create

a transformed signature called “EigenNSS”. The EigenNSSs

of each class is then used to calculate the pattern vector (εf )

of that particular class. Finally, two thresholds are chosen for

the system, (i) λnss for determining if a particular signature

is valid, and (ii) λfc for determining class associations.

Once the system is trained, traces collected from UDs

suspected faulty can be diagnosed. First, a trace is collected

from the UD and sent through the same feature extraction and

NSS generation process. Then, the NSS is projected on the

eigen matrix created during the training to create EigenNSS.

EigenNSS is then used to calculate the pattern vector (ε)

and the Euclidean distance (σ) of the pattern vector from

each known class. Also, the NSS is used to calculate square

distance (µ) from the training NSS data set. Depending on the

minimum Euclidean distance (σmin) and square distance (µ),

the system can determine one of three outcomes.

(i) If µ > λnss, the sample is highly distorted to the point

Fig. 2. Operational overview of the diagnostic system.
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a reliable diagnosis is not possible.

(ii) If µ < λnss & σmin < λfc, the sample is classified to

the class associated with the minimum distance. These

samples can be added to the training NSS database or εf
of the class can be recalculate to include the new sample.

(iii) If µ < λnss & σmin > λfc, the sample contains a valid

signature, yet does not belong to any of the known

classes. The sample is classified as unknown.

The unknown classes are stored in a separate DB with

their pattern vectors. These unknown classes are then sent

though a cluster estimation algorithm [19] which determines

(i) if the data set has samples that can be clustered within

the λfc bound, and (ii) the number of clusters that can be

created. Then these cluster data is then sent to a clustering

algorithm which uses fuzzy C-means clustering with iterative

optimization [20] to determine the exact cluster membership.

A detailed discussion of [19] and [20] is not presented in

this paper due to space limitations and can be found from

the references. If the any of the clusters reach a minimum

threshold size, this cluster is determined as a new class.

The EigenNSS in the new class are sent to the class pattern

vector calculation and NSS are sent to the classifier training

database. Although new class can be dynamically added just

by calculating class pattern vector, the system can be re-trained

in a short time with the updated NSS database when it does not

perform any diagnosis. Re-training includes the new classes in

principal component selection and improves the final accuracy.

Furthermore, the system prompts the administrators a new

fault class has been detected. After an investigative analysis

of the actual root cause, a class label can be added to the new

fault.

IV. NORMALIZED NETWORK SIGNATURES (NSS) OF

SOFT-FAILURES

Any ML-based diagnostic system is highly dependent on the

effectiveness of extracted signatures to characterize faults. We

have, in previous publications, proposed a method to create

signatures of UD faults that is both effective and scalable.

Here, we only provide the high-level details of NSS creation

and more details can be found in [21].

A signature is defined as a collection of features (or at-

tributes), each representing a single aspect of runtime behavior

and provide the key to differentiate normal behaviors from

the abnormal or faulty ones. In our work, the features are

extracted from TCP packet traces collected from controlled

connections initiated between the diagnostic server and UD,

on-demand by the user. Because of TCPs position in the

middle of the protocol stack and reliable transport function-

ality, performance issues in other layers are embedded as

anomalies on TCP packet streams. Also, by using TCP as

the information source, data can be gathered remotely without

user relinquishing control of the device, protecting the user’s

privacy. The connections carry a fixed size file of 20 MB as a

download and an upload. The fixed size file has been used to

provide an easily comparable baseline.

Feature type Features

Cumulative totals of various
packet types

Total packets
SACK packets
DSACK packets
Retransmitted packets
Triple dupACKs

..
.

Cumulative payload
characteristics

Unique bytes
Packets with data
Data retransmitted
Data out-of-order
Data missing

..
.

Max, min, mean, cumulative
observation frequencies of
events

Out-of-order events
Cumulative acknowledged segments
Data retransmissions
Max segment retransmissions
Zero window advertisements
Window probes

..
.

Max, min, mean information
on variable parameters

Window advertisements
Segment size

..
.

Initial state and final state
parameters

Window scaling advertisements
Initial window

..
.

Round trip time, arrival time
progression analysis

Retransmission times-max-min-ave
Idletimes-max-min-ave
RTT-max-min-std

..
.

Boolean parameters of TCP
settings

3 way handshake flags (SYN/FIN)
TCP options
Data pushed

..
.

TABLE I
TYPES AND LIMITED EXAMPLES OF FEATURES EXTRACTED FROM THE

TCP TRACE. THE SAME FEATURES ARE EXTRACTED FROM BOTH UPLOAD

AND DOWNLOAD PACKET STREAMS. SEPARATE CUMULATIVE FEATURES

ARE CREATED FOR EACH DIRECTION (client ↔ server ) CONSIDERING

THE BI-DIRECTIONAL NATURE OF THE CONNECTIONS. REFER TO [21]
FOR FURTHER DETAILS.

The collected traces are then sent through the feature

extraction module where analysis tool we developed based on

tcptrace extracts aggregated statistical attributes of the traces.

In this paper, we use 205 features extracted from each trace

which brings the total feature set of the raw signature to

410 when both upload and download traces are combined.

For examples, the features include cumulative totals of packet

types, payload characteristics, observation frequencies of spe-

cific events, initial and final state parameters, delay based

statistics, and TCP boolean parameters as summarized in

Table I. However, an exhaustive list of features has not been

presented due to space limitation of this paper.

When deployed in a network, the traces captured from

a healthy UD with optimum system settings provide the

baseline performance signature. Each of the raw signatures

is normalized against the healthy baseline and the resultant

feature vector is called the Normalized Statistical Signature

(NSS). The Figure 3 shows NSSs collected from 4 types

(classes) of UDs, a healthy and three types of faults. The
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(d) Window scaling error

Fig. 3. Comparison of NSSs for four common UD soft-failures. Here, the x-axis (columns) of each figure represents 410 features of the 70 NSSs shown
on y-axis (rows). Each of the features has been normalized and scaled [-6,6] and each of the features is represented by colored vertical line projecting the
scaled feature value to RGB space. This representation offers easy visualization and comparison of the total NSS. As visible here, the combination of features
uniquely represents each fault and can be used as the “fingerprint” for a diagnosis.

figures clearly show that each type of NSS has a unique feature

pattern throughout the 70 samples and this pattern provides the

distinction needed for an effective diagnosis.

Having a large feature set enables the NSS to characterize

a range of faults through a single representation. However, as

evident from the Figure 3, not all features contribute equally

for the separability of the classes. Also, even within the same

class, the NSSs show variations due to the stochastic nature of

the link. When training a ML-based system, a large feature set

can lead to over-fitting of the data and ultimately lead to poor

generalization and poor classification accuracy. Furthermore,

the feature variations within a class can compound this prob-

lem as ML-algorithm tries account for all the variations in the

data by using more features. Consequently, the dimensionality

of the NSSs should be reduced while preserving important

information to build an effective diagnostic system.

V. EIGENNSS: TRANSFORMED SIGNATURES FOR

REDUCED DIMENSIONALITY

To overcome the aforementioned challenges, we look at the

signatures from information theoretic point of view emphasiz-

ing on the significant global features that contain a maximum

amount of information. In our method, information is extracted

from the NSSs that contributes to maximum amount of class

variations. Then, the NSSs are encoded using this informa-

tion to reduce the dimensionality of an NSS. We achieve

this by finding the principle components (i.e eigenvectors of

the covariance matrix) of the distribution of NSSs. These

eigenvectors are then ordered, each one accounting for a

different amount of variation among the NSSs. Finally, the

NSSs are projected on to selected number (D) of eigenvectors

that account for the highest variation. These projections are

called “EigenNSS” and represent the original samples in a

D-dimensional space.

A. Calculating EigenNSS

The calculation of EigenNSS is as the following. Assume

we have training NSSs, x1, x2, ..., xp where x is an m-

dimensional feature vector. For an example, the set of NSSs

shown in Figure 3 has 70 samples per class and 4 classes

(p = 70× 4 = 280) each with 410-dimensional feature vector

(m = 410). Mean NSSs of the data set can be found by

Φ =
1

p

p∑

k=1

xk

The training NSSs matrix is then mean centered by

xi = xi − Φ

where xi is the shifted m-dimensional feature vector of the

ith instance. The resultant matrix ∆ = {x1, x1, ..., xp} has

the dimensions of p × m and subjected to principal compo-

nent analysis where eigenvectors υi and the corresponding

eigenvalues ηi of ∆ are determined by solving well-known

singular value decomposition problem [22]. However, only a

pre-determined D number of eigenvectors are selected with the

highest η to create the eigen matrix which has the dimensions

of m×D. EigenNSSs are then created by projecting the shifted

NSS matrix ∆ on to the eigen matrix Ψ as

Θ = Ψ∆

where Θ = {e1, e1, ..., ep} and e is an D-dimensional

EigneNSS.

The Figure 4 shows the EigenNSSs with D = 10 created

from NSSs in Figure 3. As can be seen, EigenNSSs has

drastically reduced the dimensionality while preserving the

most important information for class separation. This is clearly

visible from the range of EigneNSS feature values in each

class which shows significant differences compared to the

NSSs.
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Fig. 4. EigenNSSs generated from the NSSs shown in Figure 2. Here, each class has 70 EigenNSS with D = 10. Each class has been scaled differently to
reflect the feature values range in each class.

VI. SYSTEM TRAINING AND CLASSIFICATION CRITERIA

The EigenNSS matrix Θ contains samples from multiple

classes, each associated with a fault (f ). Assuming that each

class has n EigenNSSs, the D-dimensional class pattern vector

εf is calculated by averaging the EigenNSSs as

εf =
1

n

n∑

k=1

ek

The simplest method of determining the class association of an

NSS with EigenNSS e is by calculating the Euclidean distance

σ between e and each of the class pattern vectors as

σf = ‖e − εf‖
2

The sample NSS is classified to as belonging to class f when

the minimum σf is below a chosen threshold λfc.

Due to errors in data collection and random nature of net-

works, some collected packet traces can be distorted. However,

due to the low dimensionality of the EigenNSS, there is a

chance that erroneous NSSs generated from these distorted

packet traces could project into a valid, but wrong class leading

to a false detection. We define another distance threshold λnss,

where squared distance between mean centered NSS and the

training NSSs must be less than the λnss for the sample to be

considered valid.

Once the class pattern vectors εf , λfc, and λnss are de-

termined, the system is ready to perform diagnosis of UDs

suspected faulty. First, a packet trace is collected from the

UD and sent through the feature extraction, normalization to

generate the NSS (y). Then, the NSS is mean adjusted by

y = y − Φ

and projected on to the eigen matrix Ψ created during training

as

E = Ψy

where, E is the D-dimensional EigenNSS of the sample. The

Euclidean distance from the sample to each class is calculated

by

σf = ‖E − εf‖
2

The distance from NSS feature vector y to training NSS are

calculated as

µ = ‖y − Φ‖
2

Depending on the minimum σf and µ, the sample is deter-

mined (i) distorted and discarded, (ii) classified into the class

f , (iii) classified as a known class and added to unknown DB

following the criteria previously mentioned in Section III.

VII. PERFORMANCE ANALYSIS

The performance of the system was evaluated experimen-

tally and this section provides an analysis of the diagnostic

capability.

A. Data set

The data required to train and test the system was collected

over the live campus network. Collecting data from actual

user complaints was challenging considering the amount of

time required to collect a sufficient number of samples for a

statistically robust analysis, and resources needed to manually

identify the issues and label the signatures. Instead of using

data from real users, we created a fault emulator module to re-

create commonly found problems in UDs. The fault emulator

was installed in test computers connected to the live university

network in multiple locations. The campus network was used

to demonstrate the viability of the system in a real computing

environment with cross traffic and congestion. Emulation of

faults offered an efficient way of collecting accurate data with

minimal resources.

We emulated 16 common UD faults that can affect the

network performance as listed in Table II. The faults included

hardware platform problems and span multiple layers of the

network stack. The 16 fault cases together with the “Healthy”

case created the 17 classes used in this evaluation. Over 6

weeks period of time, we collected 12685 traces from UDs em-

ulating these 17 cases. These traces contained approximately

equal amounts of samples from healthy as well as the faulty

classes and included UDs that ran 8 different flavors of TCP.

Multiple flavors of TCP was used since in the real world

networks, implementation of TCP changes between devices

resulting in subtle differences in connection behavior [7]. We
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Fig. 5. Overall accuracy of the system against dimensionality (D) of the
EigenNSS. Each graph represents a different per-class training dataset size.

wanted to demonstrate the robustness of the system against

such differences.

B. System performance

For the initial system training, we only chose 13 classes as

our evaluation needed to consider the unknown faults. The

faults CF2, CF8, CF10, CF17 were kept as the unknown

faults (refer to Table II). The data set of the first 13 classes

was randomly divided to training and testing groups. The

unknown class data was sent through the system at random

intervals during the testing stage. Also, the cluster threshold

to add an unknown fault as a known fault was set as equal to

the number of per-class training samples used to initiate the

system (e.g. if system was initially trained with 50 samples

class, an unknown class is added as a known fault when

a cluster membership reaches 50). To achieve a statistically

robust results, we conducted the experiment for 8 iterations

and averaged the results.

The two threshold parameters λnss was set to 1.57× 10−9

and λfc was set to 0.06. λnss value was chosen by analyzing

the whole training dataset and λfc was chosen by an iterative

process that maximized the correct class associations. These

two parameters can be carried to a new system, given the

network environment does not significantly differ from the one

being used during the experiment.

The Figure 5 shows the overall accuracy of the system in

identifying the testing samples which were previously unseen.

Here, n represents the number of samples per class used

for training and x-axis shows the dimensionality (D) of the

EigenNSS. Similarly, Figure 6 shows the overall confusion

rate of the system, which indicate the ratio of misclassified and

total samples. From the Figures 5 and 6, we can see that the

system achieved a high overall performance with 25 EigenNSS

features for all n-values. Any additional features added only a

marginal performance gain. Given that original NSS contained

410 features, these results show a successful dimensionality

reduction of 93.9%. Also, the figures show that with increasing
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Fig. 6. Overall confusion rate of the diagnostic system against dimensionality
(D) of the EigenNSS for different per-class training dataset size (n).

training sample size, the system performance improves. This

indicated that since, the system has been designed to iteratively

add and re-train the system with correctly classified samples,

when deployed in a network, the overall accuracy of the

system continues to improve with time. However, as the figures

show, the performance gain diminishes with the increasing

sample size. We managed to achieve a 97.1586% overall

accuracy and 0.0284 confusion rate with 200 samples per class

and 25 EIgenNSS features for the 17 class system.

The Table II summarizes performance of the 17 classes used

in our EigenNSS-based multiclass classifier design. Matrices

used in the table are as following:

(i) True-Positive Rate (TPR): Members of class X correctly

classified as belonging to class X.

(ii) False-Positive Rate (FPR): Members of other classes

incorrectly classified as belonging to class X.

(iii) True-Negative Rate (TNR): Members of other classes
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Fault Description TPR (%) FPR (%) TNR (%) FNR (%)

CF1 Healthy 95.5202 4.4798 99.8254 0.1746
CF2 Disabled SACK error 94.1799 5.8201 99.4724 0.5276
CF3 Insufficient write buffer 97.6994 2.3006 99.5482 0.4518
CF4 Insufficient read buffer 96.5517 3.4483 99.7679 0.2321
CF5 Simultaneously insufficient read & write buffer 97.4203 2.5797 99.7913 0.2087
CF6 TCP timestamps are not working/in error 98.7952 1.2048 99.9536 0.0464
CF7 Window scaling error 98.9426 1.0574 99.942 0.058
CF8 Limited reordering threshold 91.2587 8.7413 99.7016 0.2984
CF9 Link-UD speed mismatch level 1 99.1886 0.8114 99.5678 0.4322
CF10 Link-UD speed mismatch level 1 & duplex mismatch 92.9204 7.0796 99.9771 0.0229
CF11 Link-UD speed mismatch level 2 99.0494 0.9506 99.9201 0.0799
CF12 Link-UD speed mismatch level 2 & duplex mismatch 98.4906 1.5094 99.9429 0.0571
CF13 UD firewall causing packet loss 100 0 99.8977 0.1023
CF14 UD firewall causing packet delay 100 0 100 0
CF15 Overloaded UD CPU 99.7403 0.2597 99.8652 0.1348
CF16 Overloaded UD memory 98.6111 1.3889 99.8532 0.1468
CF17 UD HDD faulty or i/o overloaded 94.198 5.802 99.9333 0.0667

TABLE II
PER-CLASS ESTIMATION PERFORMANCE OF THE EIGENNSS-BASED DIAGNOSTIC SYSTEM AT D = 25 AND n = 200.

correctly classified as not belonging to class X

(iv) False-Negative Rate (FNR): Members of class X incor-

rectly classified as not belonging to class X.

The table shows that all different types of faults can be

uniquely identified independently with high-level of accuracy

as suggested by high TPR, TNR. Also, low FPR, FNR rates

indicate that the classifier has a low false detection rate for

all the classes. The unknown classes, CF2, CF8, CF10, and

CF17 have a slightly lower accuracy compared to other classes

because the first observations of these classes are classified

unknown prior to recognizing them as a new class. Even with

this delay in creating the class, the previously unknown classes

managed to achieve >90% TPR.

The Figure 7 shows the confusion matrix of the EigenNSS-

based system. Confusion matrix is a typical representation

used in evaluating multiclass classifiers where the rows rep-

resent target or expected (actual) class and the columns
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Fig. 8. Overall accuracy of the EigenNSS-based diagnostic system vs NSS-
NB system.

represent the predicted classes. The correct classifications

lie on the diagonal of the matrix and all the other indices

are misclassified instances. The ratio of instances in every

element and column sum (total samples actually belongs to

the class) is color coded. In real world diagnosis of UD faults,

misclassifications could lead to false conclusions. However,

the Figure 7 shows that our system was successful in avoiding

large misclassifications satisfying a primary requirement of

such a diagnostic solution.

The proposed EigenNSS-based Euclidean distance classifier

system (EigenNSS-ED) was also tested against an Euclidian

Distance classifier (NSS-ED) and a Naive Bayes multiclass

classifier [23] (NSS-NB) that used the original full length NSS.

The system was trained with all 17 classes at the beginning and

used the same training and testing data. The Figure 8 shows

the comparison of overall system accuracy with increasing

number of training samples between EigenNSS-ED, NSS-ED
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Fig. 9. Training and single sample diagnosis time variations against
increasing training dataset size for EigenNSS-ED and NSS-NB classifiers.
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and NSS-NB systems. With any given training dataset, the

figure shows that EIgneNSS-ED system outperforms NSS-ED

and NSS-NB systems. This mainly a consequence of classifier

overfitting with the 410-feature NSS.

Time taken to train the system and evaluate a new sam-

ple (diagnosis) are important performance criteria, specially

considering the iterative training process of EigenNSS-ED

system. We tested and compared how both the total training

time and single diagnosis time vary with training samples per

class for all the classifiers. The test were carried out in a

PC with Intel Core i7 4.4GHz CPU, 16GB 1600MHz RAM

and using Matlab R2012b. The Figure 9 shows that NSS-NB

and NSS-ED classifiers have longer training time compared

to EigenNSS-ED classifier. Furthermore, the training time for

EigenNSS-ED system was in the order of milliseconds (24 ms-

435 ms when n = 10− 200) which suggests iterative training

does not impact the practical usability of the EigenNSS-ED

system. The diagnosis time also shows that EigenNSS sample

can be diagnosed faster compared to NSS, despite the fact that

EigenNSS calculation involves more steps. Diagnosis times of

the EigenNSS-ED (4 ms - 66 ms) indicate that, once trained,

such a system will not be limited to on-demand diagnosis, but

also can be used for real time diagnosis applications.

VIII. CONCLUSION

We have proposed and evaluated an automated UD soft-

failure diagnostic system based on single multiclass clas-

sifier design. Combining supervised and unsupervised ML

techniques, the system is capable of diagnosing known and

previously unknown faults. We also presented a signature

transformation technique to reduce the dimensionality of NSS

while preserving important information and created EigenNSS.

The EigenNSS reduces the complexity of the classifiers and

avoids model overfitting to achieve a higher system accuracy.

The system was evaluated by diagnosing 17 UD faults

collected over live campus network which showed overall

accuracy of up to 97.2%. We also achieved a dimensionality

reduction of 94% and low confusion between classes. To our

knowledge, the proposed system is the first framework for

automating the known and unknown UD soft-failure diagnosis.

This work provides the foundation to extend the system to

more complex network environments with thousands of users,

diverse client platforms, and complex traffic patterns.
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