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a b s t r a c t

We propose a new camera-based method of robot identification, tracking and orientation
estimation. The system utilises coloured lights mounted in a circle around each robot to
create unique colour sequences that are observed by a camera. The number of robots that
can be uniquely identified is limited by the number of colours available, q, the number of
lights on each robot, k, and the number of consecutive lights the camera can see, ℓ. For a
given set of parameters, we would like to maximise the number of robots that we can use.
We model this as a combinatorial problem and show that it is equivalent to finding the
maximum number of disjoint k-cycles in the de Bruijn graph dB(q, ℓ).

We provide several existence results that give the maximum number of cycles in
dB(q, ℓ) in various cases. For example, we give an optimal solution when k = qℓ−1.
Another construction yields many cycles in larger de Bruijn graphs using cycles from
smaller de Bruijn graphs: if dB(q, ℓ) can be partitioned into k-cycles, then dB(q, tℓ) can
be partitioned into tk-cycles for any divisor t of k. The methods used are based on finite
field algebra and the combinatorics of words.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A robot network is a collection of robots working together to achieve a common goal. In order for the robots in
such a network to cooperate effectively, the ability to observe each other’s movements is critical. In many applications,
distinguishing between the robots is necessary, but is usually difficult because the robots are identical.

For example, in a formation control system, robots collectively arrange themselves in some fixed geometric
configuration [2,9]. Each robot controls its position relative to its neighbours. To achieve this, the robot must continuously
measure the position and determine the identity of each neighbour. Some formation control systems may also benefit from
knowledge of the relative orientation of its neighbours, since this information can be used to coordinate views and improve
the stability of the system.

We present a novel camera-based method for robot identification, orientation estimation, and approximate
distance/angle measurements. The system uses a camera to observe sequences of coloured lights mounted on the robots.
The lights are mounted in a circle around each robot (in a plane parallel to the ground), such that a camera may see only
some of the lights. The sequences of colours are chosen so that any consecutive subsequence of sufficient length corresponds
uniquely to a particular robot in a particular orientation.
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Fig. 1. An eBug displaying a colour sequence on eight of its sixteen LEDs. The camera viewing the eBug can only see three of these LEDs.

Fig. 2. Example eBug colouring with q = 2, k = 8 and ℓ = 5.

This system was implemented in an existing network of eBugs. The eBug [8] is a robotics platform designed at Monash
University’sWireless Sensor and Robot Networks Laboratory [28]. It is equipped with sixteen RGB LEDs (red, green and blue
light-emitting diodes) on its perimeter, which can be programmed to display a sequence of colours. A photo of an eBugmay
be seen in Fig. 1.

Fig. 2 shows an example of a colouring of four eBugs. These eBugs have only eight LEDs, and use only two different
colours for illustrative purposes. Any subsequence of five LEDs is coloured with a unique pattern. For example, the sequence

appears (counter-clockwise) only on the right side of the second eBug.
In a real system, there are limits on the number of colours a camera may reliably distinguish. Similarly, spatial resolution

of the camera limits the number of detectable LEDs around each eBug. Therefore, for a given set of parameters, we want to
maximise the number of eBugs that we can use in the system. This maximum, the eBug number, is formally defined below.

Definition 1 (eBug Number). Suppose every eBug has k LEDs, each of which can be illuminated in one of q colours, and
suppose further that a camera can reliably detect ℓ ≤ k consecutive LEDs. An assignment of colours to the LEDs of all eBugs
is ℓ-valid if the camera can distinguish each eBug in each of the k orientations. The eBug number E(q, k, ℓ) is the maximum
number of eBugs for which there exists an ℓ-valid assignment of colours.

As well as modelling an actual problem that arises in robot networks, determining eBug numbers is a natural
combinatorial problem of independent interest.
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Each of the qℓ possible sequences the camera can see cannot appear more than once, and each eBug uses k distinct
sequences. This gives the following upper bound for the eBug number:

E(q, k, ℓ) ≤
qℓ

k
. (1)

Colourings that achieve the upper bound in (1) are called optimal. In such colourings, each sequence of ℓ colours appears
on some eBug. Note that when k = ℓ, no ℓ-sequence of a constant colour can appear on an eBug since all orientations would
be identical. Thus optimal colourings can only exist for k > ℓ.

A lower bound may be obtained by applying the Lovász local lemma [12,23]: consider a random colouring of n eBugs,
with each of the nk LEDs coloured independently and uniformly at random. For each pair (i, j) of LED sequences (of length
ℓ), let Aij be the event that the same colour sequence has been assigned to i and j. Thus the colouring is ℓ-valid exactly when
none of the events Aij occurs. Since there are exactly nk LED sequences, and each sequence overlaps with at most 2ℓ − 1
other sequences, each event Aij depends on at most nk(2ℓ − 1) − 1 other events. The probability of each Aij is at most q−ℓ

(less if i and j are overlapping). Therefore, by the local lemma, there is an ℓ-valid colouring whenever eq−ℓnk(2ℓ− 1) ≤ 1,
where e is Euler’s number. Hence we obtain the following lower bound:

E(q, k, ℓ) ≥


qℓ

(2ℓ− 1)ek


.

For a fixed value of ℓ, this bound is within a constant factor of the upper bound in (1). In actual camera systems, however,
it is reasonable to assume that ℓ is proportional to k, since a camera can usually detect a fixed arc of the LED circle. Thus the
lower bound is rather crude, and ultimately we would like to solve the following problem.

Problem 1. Determine E(q, k, ℓ) exactly.

For small values of q and ℓ, a computer search was performed to find large ℓ-valid colourings. Surprisingly, optimal
colourings were found in many cases. These experiments confirm the following conjecture for all q and ℓ with qℓ ≤ 81.
While Problem 1 is likely to be very difficult to solve in general, a mathematically interesting problem is to characterise
when optimal colourings exist (hopefully by proving Conjecture 1).

Conjecture 1. E(q, k, ℓ) =
qℓ

k whenever k divides qℓ and k > ℓ.

This paper provides constructions for some infinite families of optimal colourings, and as such gives evidence to support
this conjecture.

In Section 2, Problem 1 is shown to be equivalent to finding many cycles in a de Bruijn graph, with Conjecture 1
corresponding to a partition into cycles (see Proposition 1). Existing results about de Bruijn sequences are also discussed.

A well-known algebraic construction of de Bruijn sequences is given in Section 3; we extend this construction to prove
some existence results for eBug colourings. The major result of this section is Theorem 1, which proves Conjecture 1 for
infinitely many values.

Theorem 1. If q is a prime power and ℓ ≥ 1, then E(q, qℓ−1, ℓ) = q.

In Section 4, we introduce necklaces and how they relate to de Bruijn graphs.We then prove the following theorems, both
of which yield large eBug colourings from smaller ones.

Theorem 2. Fix a value of ℓ and set E1 = E(q1, k1, ℓ) and E2 = E(q2, k2, ℓ). Then

E(q1q2, lcm(k1, k2), ℓ) ≥ gcd(k1, k2) E1 E2.

Theorem 3. E(q, tk, tℓ) ≥
kt−1

t E(q, k, ℓ)t whenever t divides k.

These theorems preserve optimality, so we may use them to find optimal colourings for large numbers of eBugs.

2. Preliminaries

2.1. de Bruijn graphs

A valid colouring of eBugs has an interesting interpretation as cycles in a de Bruijn graph. These graphs were discovered
independently by de Bruijn [10] and Good [15] in 1946.

Definition 2. The ℓ-th order q-ary de Bruijn graph dB(q, ℓ) is the directed graph with vertex set V = Zℓq and edge set
E = {(a0a1 . . . aℓ−1, a1a2 . . . aℓ) | ai ∈ Zq}.
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Fig. 3. Example de Bruijn graph—dB(2, 3).

The vertices of dB(q, ℓ) are words of length ℓ over an alphabet of size q. There is an edge from u to v if shifting u left and
appending any letter gives v. An example of such a graph is shown in Fig. 3.

There is also an alternative, equivalent definition of de Bruijn graphs that involves iteratively taking line digraphs [29].
In this construction, dB(q, 1) is defined as the complete digraph on q vertices with loops. Higher order de Bruijn graphs are
defined as follows: dB(q, ℓ+ 1) is the line digraph of dB(q, ℓ). The vertices in dB(q, ℓ+ 1) correspond to edges in dB(q, ℓ).
Note that while cycles in dB(q, ℓ) map directly to cycles in dB(q, ℓ + 1), the converse is not always true: there may be
repeated vertices when a cycle from dB(q, ℓ + 1) is projected down to dB(q, ℓ). The objects in dB(q, ℓ) that correspond to
cycles in dB(q, ℓ+ 1) are called circuits, which are closed walks with no repeated edges (vertex repetition is allowed).

Proposition 1. The following are equivalent:

1. E(q, k, ℓ) =
qℓ

k .
2. There is a partition of the vertex set of dB(q, ℓ) into pairwise disjoint k-cycles.
3. There is a partition of the edge set of dB(q, ℓ− 1) into pairwise edge-disjoint k-circuits.

Proof. (1 ⇐⇒ 2) Suppose that each vertex of dB(q, ℓ) corresponds to a particular camera view of ℓ consecutive LEDs on
some eBug. Rotating the eBug to the left corresponds to following an edge in the graph, since the LEDs shift to the right and
one new LED is visible. Hence a cycle of length k in dB(q, ℓ) corresponds to the colouring of a single eBug with k LEDs. A set
of multiple disjoint cycles gives an ℓ-valid colouring of multiple eBugs (because vertices are not repeated, each orientation
is uniquely identifiable), so the eBug number E(q, k, ℓ) equals the maximum number of disjoint k-cycles in dB(q, ℓ). If every
vertex is in one of the k-cycles, then each colour sequence appears on some eBug. Conversely, if any given colour sequence
can be found on some eBug, then the corresponding vertex is in one of the k-cycles. Thus optimal colourings exist exactly
when the whole graph can be partitioned into disjoint k-cycles.

(2 ⇐⇒ 3) The equivalence follows immediately from the line digraph construction. �

Bryant studied edge decompositions of complete directed graphs with loops [3], which correspond to the first order
de Bruijn graphs dB(q, 1). The main result of [3] was that dB(q, 1) can be decomposed into k-circuits if and only if k ≥ 3 and
k divides q2. By Proposition 1, this solves Conjecture 1 for ℓ = 2.

A similar problemwas also posed by Dudeney in 1917 [11], now commonly known as ‘‘Dudeney’s round table problem’’.
This problem is equivalent to finding a set of Hamiltonian cycles in the complete graph Kn, such that every path of two edges
appears in exactly one of the cycles. Dudeney’s problemwas solved for even n [16], and also some other cases such as when
n − 1 is a prime power [20]. A generalisation of Dudeney’s problem was studied in [17]; here Kn is covered by k-cycles
with the same property (instead of n-cycles). The main difference between these problems and Problem 1 is that we are
concerned with directed circuits in digraphs, and that we allow loops on the vertices.

There is a body of research on cycle decompositions of complete graphs (see [4] for an introduction and [5] for recent
results), and also some work relating to decompositions into fixed-length directed cycles [1]. The methods used, however,
are very specific to the special structure of complete graphs, and cannot be applied to de Bruijn graphs. There are also
results about decomposing de Bruijn graphs into variable-length cycles, using techniques like splitting and merging existing
cycles [7]. Golomb’s conjecture, which was proven by Mykkeltveit [19], states that the decomposition of binary de Bruijn
graphs into the largest number of disjoint cycles is the decomposition into necklaces (see Section 4 for a definition). These
results, unfortunately, cannot easily be applied to help with Conjecture 1, since the specific requirement of fixed-length
cycles is quite restrictive.

2.2. de Bruijn sequences

Note that in the de Bruijn graph dB(q, ℓ), every vertex has in-degree and out-degree q. Also, a path can be found from any
vertex u to any vertex v by shifting in letters of v one at a time, so the graph is connected. Hence dB(q, ℓ) is Eulerian, and the
next de Bruijn graph dB(q, ℓ + 1) is Hamiltonian (since an Eulerian circuit in dB(q, ℓ) is equivalent to a Hamiltonian cycle
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in dB(q, ℓ + 1)). This simple fact gives us a starting point for Conjecture 1 in the k = qℓ case: it shows that E(q, qℓ, ℓ) = 1
for every q and ℓ.

Hamiltonian cycles in de Bruijn graphs are called de Bruijn sequences. The number of (q, ℓ)-de Bruijn sequences is

(q!)q
ℓ−1

qℓ
.

This result is due to vanAardenne-Ehrenfest and de Bruijn [24], and uses an equivalence between spanning arborescences
and Eulerian circuits in Eulerian digraphs.

There are several known methods for generating de Bruijn sequences. One construction [21, Section 7.3] gives the
lexicographically smallest sequence for any given values of q and ℓ through clever concatenation of necklaces. This method
is described in Section 4.1. Another construction involves calculations in finite fields [21, Section 7.7]. This only works when
q is a prime power, but has a very simple implementation, which is described in Section 3.1.

3. Linear feedback shift registers

In this section, algebraic properties of finite fields are exploited to find interesting structures in de Bruijn graphs.
Section 3.1 describes a well-known construction of de Bruijn sequences; we extend this construction further in Sections 3.2
and 3.3 to find multiple k-cycles in de Bruijn graphs. We assume that the reader is familiar with elementary group and field
theory; see [13] for example.

3.1. Construction

Let q be a prime power, and choose a primitive element α from the finite field F := GF(qℓ). That is, α generates
the multiplicative group F∗

= F \ {0}. We may consider F to be an ℓ-dimensional vector space over GF(q), in which
case {1, α, α2, . . . , αℓ−1

} is a basis. In particular, αℓ can be written as a linear combination of these basis vectors: αℓ =

p0 + p1α + · · · + pℓ−1α
ℓ−1 (this is called theminimal polynomial of α over GF(q)).

A linear feedback shift register (LFSR) is a digital circuit that generates elements of F∗ by successive multiplication by
α. The simplest implementation, a Galois LFSR, represents the field elements as vectors in GF(q)ℓ with respect to the basis
{1, α, α2, . . . , αℓ−1

}. Multiplication of a vector v := (v0, v1 . . . , vℓ−1) by α is simply a shift of the vector to the right, except
that an αℓ term is produced. But αℓ can be rewritten in terms of the basis vectors, so the multiplication corresponds to the
function v → (0, v0, v1, . . . , vℓ−2)+ vℓ−1(p0, p1, . . . , pℓ−1). Since the new state is a linear transformation of the previous
state, this function can be expressed as thematrix equation v → Mv (over GF(q)), where the state change matrix1 M is given
by

M =


0 0 · · · 0 p0
1 0 · · · 0 p1
0 1 · · · 0 p2
...

...
. . .

...
...

0 0 · · · 1 pℓ−1

 .

The constants pi depend on α, and are called the feedback coefficients for the LFSR. Note that since F∗ is generated by α,
repeatedly applying this operation to some non-zero initial vector generates every non-zero vector in GF(q)ℓ.

A Fibonacci LFSR is a similar construction that uses the transposed state change matrix MT . In this configuration, the
next state is given by v → (v1, v2, . . . , vℓ−1,

ℓ−1
i=0 pivi). In fact, a Fibonacci LFSR performs the same operation as the

corresponding Galois LFSR when the vectors are represented in a different basis. To see this, we must find a matrix C that
satisfies CM = MTC .

Let C be defined by Cij = (M i)0j for 0 ≤ i < ℓ and 0 ≤ j < ℓ (that is, the (i, j)th entry of C is the (0, j)th entry ofM i). The
entries of powers of a companionmatrix are explicitly known [6], so we can observe that C is a symmetric matrix. Similarly,
since (CM)ij = (M i+1)0j, CM is also symmetric. Hence CM = (CM)T = MTCT

= MTC , so C is a change of basis matrix from
M toMT . Note that the first row of C is


1 0 · · · 0


, so the first basis vector for the Fibonacci LFSR is also α0

= 1 (as in
the Galois LFSR).

We now show that the Fibonacci LFSR follows edges in the corresponding de Bruijn graph. From here onwards, we do
not use Galois LFSRs and instead only represent field elements in the Fibonacci basis.

Proposition 2. Let F := GF(qℓ) and fix a primitive α ∈ F∗. If the elements of F are identified with the vertices of dB(q, ℓ) by
expressing them in the Fibonacci basis over GF(q), then (β, αβ) is an edge in dB(q, ℓ) for each β ∈ F .

1 In linear algebra, this matrix is also known as the companion matrix for the minimal polynomial of α.
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Proof. Observe that the state change operation β → αβ in a Fibonacci LFSR corresponds to a left shift of the state vector
and an extra term on the end. This is exactly what is required for an edge in dB(q, ℓ). �

Proposition 2 can be used to describe all edges of dB(q, ℓ) in terms of field operations.

Lemma 1. If β ∈ F and e ∈ GF(q), then (β + e, αβ) is an edge in dB(q, ℓ).

Proof. By Proposition 2, (β, αβ) is an edge in dB(q, ℓ). Recall that in the construction of the Fibonacci basis, the first (or
leftmost) component corresponds to the basis vector 1 (the multiplicative identity of F ). Thus adding a scalar e to a vector
only changes the first component, which is shifted out when following an edge in dB(q, ℓ). Hence β and β+e have the same
out-neighbours (including αβ). �

Now consider repeatedly applying the state change operation β → αβ to some initial non-zero field element (1 for
example). Since α generates F∗, the Fibonacci LFSR traverses a cycle of length qℓ − 1 in dB(q, ℓ). The missing vertex is 0,
and can always be inserted into this cycle by replacing the edge (1, α)with two edges (1, 0) and (0, α). Note that (1, 0) and
(0, α) are edges by Lemma 1 (with β = 1, e = −1 and β = 0, e = 1, respectively). Thus we have found a Hamiltonian cycle
in dB(q, ℓ), which is a de Bruijn sequence.

3.2. Splitting LFSR sequences

Due to the inherently algebraic construction of linear feedback shift registers, the symmetry properties of such sequences
may be exploited to produce many cycles of the same length. For this section, we identify vertices of dB(q, ℓ) with the
elements of F = GF(qℓ) via the Fibonacci basis described above (with respect to a fixed primitive α ∈ F∗).

Fix a value of k < qℓ, and let βe :=
αe
αk−1

for each non-zero scalar e ∈ GF(q)∗. Since α−1βe + e = αk−1βe, there is an edge
from αk−1βe to βe in dB(q, ℓ) (by Lemma 1with β = α−1βe).We also have k−1 other edges (αiβe, α

i+1βe) for 0 ≤ i < k−1,
so we can form a k-cycle Ce = (βe, αβe, . . . , α

k−1βe) for each of the q−1 values of e ∈ GF(q)∗. In general, these q−1 cycles
are not necessarily pairwise disjoint, but we now show that they are if k is small.

Theorem 4. E(q, k, ℓ) ≥ q − 1 for every prime power q and every k ≤ m :=
qℓ−1
q−1 .

Proof. Let logα β ∈ Zqℓ−1 be the value of i for which αi
= β; that is, the discrete logarithm of β with base α. This is well-

defined on all of F∗ because α is a generator. Note that logα β is also the position of β in the LFSR sequence (if the initial
state is 1). Now consider the relative position of the starting points of two different cycles Cx and Cy as described above, with
x, y ∈ GF(q)∗. The distance along the LFSR sequence between these starting points is

logα βx − logα βy = logα


αx

αk − 1


− logα


αy

αk − 1


= logα


x
y


.

Note that x
y ∈ GF(q)∗, which is a subgroup of F∗ of order q − 1. Also note that (αm)q−1

= 1, and that im < qℓ − 1 = |F∗
|

for i < q − 1. Thus αm has order q − 1. But there is only one subgroup of F∗ of order q − 1 (since F∗ is cyclic), so x
y ∈ ⟨αm

⟩.
Hence x

y = (αm)j for some j, so logα(
x
y ) = jm is an integer multiple ofm. Since k ≤ m, the k consecutive vertices of Cx cannot

be in Cy, whose starting vertex is at leastm places past the start of Cx. Hence these q − 1 k-cycles are pairwise disjoint. �

3.3. Translating LFSRs

Fix a scalar e ∈ GF(q), and let ξe(β) := αβ + αe. Note that ξe has exactly one fixed point, namely ϕe =
αe
1−α . Hence

ξe(β + ϕe) = α (β + ϕe)+ αe = αβ + ξe(ϕe) = ξ0(β)+ ϕe. (2)

By Lemma 1, the q out-neighbours of a vertex β are {ξe(β) | e ∈ GF(q)}. Thus we may partition the edges of dB(q, ℓ)
into the q parts Pe := {(β, ξe(β)) | β ∈ GF(qℓ)}, where e ∈ GF(q). Note that (2) ensures that (x, y) ∈ P0 implies (x + ϕe,
y + ϕe) ∈ Pe. Hence if (β1, β2, . . . , βk, β1) is a circuit contained in P0, then (β1 + ϕe, β2 + ϕe, . . . , βk + ϕe, β1 + ϕe) is a
circuit contained in Pe. We call this operation translating the circuit by e. Note that the q translations of a circuit contained
in P0 are pairwise edge-disjoint because the Pe are disjoint.

We are now ready to prove Theorem 1, which we restate here:

Theorem 1. If q is a prime power and ℓ ≥ 1, then E(q, qℓ−1, ℓ) = q.

Proof. If ℓ = 1, then the result is trivial since dB(q, 1) contains q loops. Hence we may assume that ℓ ≥ 2.
Let k = qℓ−1. By Proposition 1, it is sufficient to find a partition of dB(q, ℓ− 1) into q edge-disjoint k-circuits.
Recall from Section 3.1 that the LFSR sequence is constructed using edges solely of the form (β, αβ) ∈ P0, and forms a

cycle C0 of length k−1. This cycle (of vertices) is also a circuit of k−1 edges, andwe can construct a translated (k−1)-circuit
Ce in Pe for each scalar e ∈ GF(q).
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The circuit C0 contains every edge from P0 except the loop (0, 0) = (ϕ0, ϕ0), which translates to another loop (ϕe, ϕe) in
Pe. Since C0 contains every non-zero vertex, wemay insert, say, the loop (ϕ1, ϕ1) into C0 to obtain a k-circuitC0 (note thatC0
is no longer a cycle since it contains the vertex ϕ1 twice). Similarly, we may insert the loop (ϕe+1, ϕe+1) into Ce to generate
a k-circuitCe for each e ∈ GF(q).

Observe that each edge (β, ξe(β)) of dB(q, ℓ − 1) appears in a unique circuit: if β = ϕe, then the edge is a loop inCe−1; otherwise it is inCe. Thus we have a partition of dB(q, ℓ − 1) into q edge-disjoint k-circuits {Ce | e ∈ GF(q)}. Hence
E(q, qℓ−1, ℓ) ≥ q. �

For example, we may apply Theorem 1 with q = 3 and ℓ = 4 to obtain three cycles of length 9. Suppose we choose a
primitive α ∈ F = GF(33)whose minimal polynomial over GF(3) is α3

= 2+α. We now construct a 26-cycle C0 in dB(3, 3)
by iterating the LFSR starting from vertex 100, which corresponds to the field element 1 (the multiplicative identity of F ).
This produces the following cycle of symbols: C0 = 10020212210222001012112011 (the corresponding cycle of vertices is
100, 001, 002, . . . , 011, 111, 110).

Now we may construct the 27-circuitC0 by inserting a loop, say (111, 111), into C0. The three translations ofC0, shown
below in (3), partition the edge set of dB(3, 3), and hence the corresponding cycles in dB(3, 4) partition the vertex set of
dB(3, 4). Thus we have shown that E(3, 27, 4) = 3.C0 = 100202122102220010121120111,C1 = 211010200210001121202201222,C2 = 022121011021112202010012000. (3)

3.4. LFSRs from non-primitive elements

Suppose that in the construction of the LFSR, we chose a non-primitive element β withmultiplicative order k < qℓ−1. If
{1, β, β2, . . . , βℓ−1

} is still a basis of F = GF(qℓ) overGF(q), then vectorswith respect to this basis are still in correspondence
with field elements. Repeated multiplication by β , however, no longer generates every element of F∗; instead this process
traverses the cyclic subgroup of order k generated by β . Thus the action of the LFSR traces out this subgroup of F∗ if the
initial state is the identity 1. This corresponds to a k-cycle in dB(q, ℓ).

Choosing a different starting state for the LFSR translates the whole sequence, but does not change the length of the
cycle. This gives a partition of the non-zero vertices into k-cycles. The number of these cycles is |F∗/⟨β⟩| =

qℓ−1
k , giving

E(q, k, ℓ) ≥
qℓ−1

k .

Theorem 5. Let q be a prime power, and k a factor of qℓ − 1. If k does not divide qi − 1 for each i < ℓ, then

E(q, k, ℓ) =
qℓ − 1

k
.

Proof. Since k divides qℓ−1, there is an element β of multiplicative order k in F = GF(qℓ). Since k does not divide qi −1 for
i < ℓ, β is not in any subfield GF(qi) of F . Hence β is not the root of any polynomial over GF(q) of degree d < ℓ. Therefore
{1, β, β2, . . . , βℓ−1

} is linearly independent over GF(q), and hence a basis of F .
Therefore, the LFSR generated by β traces out a distinct k-cycle in dB(q, ℓ) for each equivalence class of F∗/⟨β⟩. We have

found qℓ−1
k disjoint k-cycles in dB(q, ℓ). Since the k-cycles cover all but one vertex in dB(q, ℓ) and k > 1, this is the best

possible bound. �

By Zsigmondy’s theorem [30], there is a prime p that divides qℓ − 1 but not qi − 1 for i < ℓ for any q and ℓ, except when
(q, ℓ) = (2, 6) or ℓ = 2 and q is a Mersenne prime (that is, q = 2p′

− 1 for some prime p′). Thus Theorem 5 can be applied
with k = p to obtain an almost optimal eBug colouring with p LEDs on each eBug (only one colour sequence is unused).
Furthermore, if larger eBugs are desired for the same values of q and ℓ, any multiple of p that divides qℓ − 1 can also be used
for k.

4. Necklaces

This section focuses on the combinatorics of words to find and combine cycles in a de Bruijn graph. A word of length k
over an alphabet A is a sequence of k letters, each ofwhich is an element of A.We often use the left rotation operation ρ, which
cyclically permutes the order of letters in a word: ρ(a1a2 . . . ak) := a2a3 . . . aka1. We may rotate a word by any amount by
repeatedly applying ρ; ρ i rotates a word by i places to the left.

Usually, a factor f of a wordw is defined as any block of consecutive letters inw, and f is a prefix if it appears at the start
of w. In this case, if w has length k, there are at most k − ℓ factors of length ℓ (or ℓ-factors) of w. For this section, we allow
factors to ‘‘wrap around’’, so that f is a factor of w if and only if it is a prefix of some rotation ρ i(w). This way, it is possible
to have k different ℓ-factors of a word of length k.
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4.1. Necklaces and de Bruijn graphs

Definition 3. A q-ary necklace is an equivalence class of words over the alphabet Zq under cyclic rotation ρ i. The length of a
necklace is the length of any word in the class, while the size of a necklace is the number of words in the class. A necklace
with equal length and size is called aperiodic.

Every word in a q-ary length ℓ necklace corresponds to a vertex in the de Bruijn graph dB(q, ℓ), and a cyclic rotation
corresponds to following an edge in this graph. Thus a size t necklace can be thought of as a t-cycle in dB(q, ℓ). Note that
every vertex is part of some necklace, so the vertex set of dB(q, ℓ) can be partitioned into necklaces.

For a fixed q and ℓ, the possible necklace sizes in dB(q, ℓ) are the divisors of ℓ. Moreau’s necklace counting function [18],
shown below in (4), gives the number of q-ary size t necklaces, and is defined in terms of the Möbius function µ.

M(q, t) =
1
t


d|t

µ


t
d


qd. (4)

The total number of length ℓ necklaces is more easily calculated using Euler’s totient function, ϕ:

Z(q, ℓ) =


t|ℓ

M(q, t) =
1
ℓ


d|ℓ

ϕ


ℓ

d


qd.

When ℓ is prime, there are exactly q necklaces of size 1 (the constant words); the remainder of the necklaces have size ℓ.
Thus there are qℓ−q

ℓ
disjoint ℓ-cycles in dB(q, ℓ). Hence E(q, ℓ, ℓ) ≥

qℓ−q
ℓ

for any prime ℓ. Note that when ℓ > q, this lower
bound is tight since there are less than ℓ remaining vertices in dB(q, ℓ).

A Lyndon word is the lexicographically smallest representative of an aperiodic necklace. It is possible to construct a
de Bruijn sequence for dB(q, ℓ) by concatenating all q-ary Lyndon words whose length divides ℓ in lexicographic order.
In fact, the sequence that is generated is the lexicographically smallest de Bruijn sequence of the given order [14].

4.2. Multiplying necklaces

Suppose we have two systems of coloured eBugs, where each colouring is ℓ-valid. In this section, we describe a type of
direct product that yields many more eBugs at the expense of using more colours. The result is summarised in Theorem 2.

Instead of modelling the colouring problem with de Bruijn graphs, we find a set of necklaces of length k that correspond
to the disjoint k-cycles in dB(q, ℓ). The definition of an ℓ-valid set of necklaces translates directly from Definition 1.

Theorem 2. Fix a value of ℓ and set E1 = E(q1, k1, ℓ) and E2 = E(q2, k2, ℓ). Then

E(q1q2, lcm(k1, k2), ℓ) ≥ gcd(k1, k2) E1 E2.

Proof. We first demonstrate this proof for the special case of k1 = k2 = k (so gcd(k1, k2) = lcm(k1, k2) = k), and then
show that the construction can be extended to the general case. The construction describes a one-to-k mapping from pairs
of necklaces to necklaces with q1q2 colours.

In order to construct necklaces over a larger alphabet, we use pairs of letters (colours) as the letters in the resulting
necklaces. We define a merging operation M that pairs corresponding letters from two words of the same length: if
a := a1a2 . . . ak and b := b1b2 . . . bk, then M(a, b) = (a1, b1)(a2, b2) . . . (ak, bk).

LetNi be an ℓ-valid set of Ei qi-ary necklaces of length k, for i = 1, 2. For each necklace n ∈ N1∪N2, choose a representative
wordwn. Now, for a pair of necklaces (n1, n2) ∈ N1 ×N2, we construct k newwords M(wn1 , ρ

i(wn2)) over Zq1 ×Zq2 , where
i ∈ Zk. Note that we only rotate one of the words, since rotating both by the same amount creates a word that is equivalent
under cyclic rotation (it is only the relative rotation that matters). An example of this process with k = 8, ℓ = 3 and
q1 = q2 = 2 is illustrated in Fig. 4.

This process can be performed for every pair (n1, n2) ∈ N1 × N2, generating k new words every time. Hence it is clear
that kE1E2 words are produced, and that q1q2 colours are used. Thus it remains only to show that the set of corresponding
necklaces is ℓ-valid.

In each of the original necklaces n ∈ N1 ∪ N2, there are k different ℓ-factors (since the Ni were ℓ-valid). Thus the total
number of distinct ℓ-factors inNi is kEi. Suppose theword a := a1a2 . . . aℓ occurs in the necklace na ∈ N1, and b := b1b2 . . . bℓ
occurs in nb ∈ N2. There is a unique i such thatwna and ρ

i(wnb) have a and b aligned, so M(wna , ρ
i(wnb))must contain the

factor (a1, b1)(a2, b2) . . . (aℓ, bℓ). Since there are kE1 × kE2 pairs of ℓ-factors from the original necklaces, there must be
at least kE1 × kE2 distinct ℓ-factors in the set of merged words. But there are only k possible ℓ-factors in each of the kE1E2
mergedwords, so each ℓ-factormust appear exactly once. Therefore the set of necklaces corresponding to themergedwords
is ℓ-valid.

To generalise to the case where k1 ≠ k2, we can traverse the original necklaces multiple times to obtain words of length
lcm(k1, k2). For a necklace n ∈ Ni, pick a representative word of n and repeat it lcm(k1,k2)

ki
times to obtain wn. This way we

may still merge words from N1 and N2 using M (since they are the same length).
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Fig. 4. Two necklaces being multiplied to produce many new necklaces. Ordered pairs of colours are used to specify the new colours in the resulting
necklaces.

Tomodel rotations ofwn1 andwn2 , we act on the pair with elements of the group Zk1 ×Zk2 . Simultaneous rotation ofwn1
andwn2 (by the same amount) only rotates themergedword that is produced, sowemay identify uniquemergedwordswith
elements of the quotient group R := Zk1 × Zk2/⟨(1, 1)⟩. Hence each pair (wn1 , wn2) produces |R| =

k1k2
lcm(k1,k2)

= gcd(k1, k2)
unique words, for a total of gcd(k1, k2) E1E2 words.

It remains to show that the set of merged words is ℓ-valid. The number of ℓ-factors that appear in Ni is kiEi. As before,
suppose the ℓ-factor a occurs in na ∈ N1 and b occurs in nb ∈ N2. Define i and j so that a is the ℓ-prefix of ρ i(wna), and b
is the ℓ-prefix of ρ j(wnb). Note that rotating both words together keeps a and b aligned, so the pair (i, j) corresponds to a
unique element of R, and thus M(a, b) appears in one of the merged words. Hence there are at least k1E1 × k2E2 distinct
ℓ-factors in the set of merged words. The number of possible positions for these ℓ-factors is the product of the number of
merged words and the length of each word. This number is gcd(k1, k2) E1E2 × lcm(k1, k2) = k1k2E1E2, so all ℓ-factors are
unique, and the set of corresponding necklaces is ℓ-valid. Hence E(q1q2, lcm(k1, k2), ℓ) ≥ gcd(k1, k2) E1 E2. �

The conditions in Theorem 2 guarantee that if the original colourings are optimal, then the resulting colouring is also
optimal. This allows a result for prime powers, such as Theorem 1, to be extended to any integer by repeated application of
Theorem 2 (after applying Theorem 1 for each prime power factor in the prime decomposition of q).

Corollary 1. E(q, qℓ−1, ℓ) = q for all q and ℓ.

On the other hand, if the original colourings are not optimal, the product colouring may be even ‘‘less’’ optimal. For
example, the construction in Section 3.4 is almost optimal since it uses all but one vertex of dB(q1, ℓ). If we use Theorem 2
to multiply this with an optimal colouring (where the k-cycles use every vertex of dB(q2, ℓ)), there would be qℓ2 vertices of
dB(q1q2, ℓ) not used by a cycle in the product colouring.

4.3. Interleaving necklaces

Theorem 3. E(q, tk, tℓ) ≥
kt−1

t E(q, k, ℓ)t whenever t divides k.

Proof. Let N be an ℓ-valid set of E(q, k, ℓ) necklaces of length k over the alphabet Zq. For each necklace n ∈ N , fix a specific
representative wordwn. We now construct the setW ⊆ Zk

q of all words that appear in some necklace from N:

W := {ρ i(wn) | n ∈ N, i ∈ Zk}.

Since N is ℓ-valid, the necklaces of N are aperiodic. Thus we may uniquely identify how far each word in W is rotated
from its representativewn. For each wordw = ρ i(wn) ∈ W , define ψ(w) := i ∈ Zk.

We now define a function I that interleaves the letters of multiple words to construct a single long word.

I(a11a12 . . . a1k, a21a22 . . . a2k, . . . , at1at2 . . . atk) := a11a21 . . . at1a12a22 . . . at2a13 . . . atk.

Note that I is injective, since we can deinterleave the resulting word to recover the original words. We write I−1 for
this deinterleaving function, which gives a t-tuple of k words from a single word of length tk. For brevity, we write t-
tuples of words in boldface as w := (w1, w2, . . . , wt) ∈ W t . We also extend ψ to operate on t-tuples, so we may write
ψ(w) := (ψ(w1), ψ(w2), . . . , ψ(wt)).

Now consider the set V := {I(w) | w ∈ W t , ψ(w1) = 0,


i ψ(wi) ≡ 0 mod t}. Note that the ψ(wi) are in Zk and t
divides k, so taking the summodulo t is well-defined. Simple arithmetic shows that |V | =

|W |
t

kt =
kt−1

t |N|
t . We claim that V

is a tℓ-valid set of words.
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Take any v = I(w) from V , and observe the following property of the interleaving function:

ρ(v) = I(w2, w3, . . . , wt , ρ(w1)). (5)

Thus if ψ(w) = (z1, z2, . . . , zt), then ψ(I−1(ρ(v))) = (z2, z3, . . . , zt , z1 + 1). Hence rotating v to the left increases
ψ(wi) by 1. By iterating (5), we can find all tk rotations of v. Of these tk rotations, only k have


ψ(wi) ≡ 0 mod t (every

tth rotation), and only one of these k has the first word not rotated (ψ(w1) = 0). Hence no other v′
∈ V is a rotation of v.

Now suppose there are v, v′
∈ V that share a tℓ-factor u (in any position). Rotate v and v′, respectively, to find ρz(v)

and ρz′(v′), both of which have u as their tℓ-prefix. Note that ρz(v) and ρz′(v′) are not necessarily in V , but are still
obtained by interleaving a t-tuple of words from W (see (5)). We may deinterleave u into a t-tuple of length ℓ words
I−1(u) = u := (u1, u2, . . . , ut). Each of these words ui is the ℓ-prefix of a unique word wi ∈ W due to the ℓ-validity
of N . Thus the only interleaved word with u as its tℓ-prefix is I(w), and hence ρz(v) = I(w) = ρz′(v′). But v′ is not a
rotation of v, so v = v′. Therefore, V is a tℓ-valid set of length tkwords and E(q, tk, tℓ) ≥ |V | =

kt−1

t E(q, k, ℓ)t . �

As an example, we now apply Theorem 3 with q = 4, k = 8, ℓ = 3 and t = 2 to the eight necklaces of length 8
in Fig. 4, which in turn were constructed using Theorem 2. These necklaces may be more compactly written as strings:
00030333, 10021233, 11020323, 11120232, 01130223, 10131222, 01031322, 00121332. Suppose we wish to interleave
the first and second necklaces in all allowable rotations. We must keep the first necklace fixed and only rotate the second
necklace by even amounts to satisfy the conditions of the set V :

00030333 00030333 00030333 00030333
10021233 02123310 12331002 33100212.

Wemay now interleave these necklaces to obtain the following four necklaces of length 16:

0100003201323333 0002013203333130 0102033301303032 0303013000323132.

But this is for just one pair of necklaces;we can repeat this procedure for every ordered pair of necklaces fromour original
list of eight. For each of the 64 possible pairs, we produce four new necklaces of length 16, yielding a total of 256 necklaces.
These are listed in Table 1, with each line corresponding to a particular pair of necklaces. Hence E(4, 16, 6) = 256.

As with Theorem 2, if the original colouring is optimal, then the colouring obtained by interleaving the necklaces is also
optimal. This allows us to extend existing results by recursively applying Theorem 3.

Corollary 2. If every prime factor of t divides q, then

E(q, tqℓ, tℓ) =
q(t−1)ℓ

t
, and

E(q, tqℓ−1, tℓ) =
q(t−1)ℓ+1

t
.

Proof. Recall that E(q, qℓ, ℓ) = 1 and E(q, qℓ−1, ℓ) = q (see Corollary 1). Now apply Theorem 3 repeatedly using each prime
factor of t . Note that since each prime factor of t divides q, and each value of k in this process is a multiple of q, Theorem 3
is applicable at each step. �

We also have a partial extension of Theorem 3, which allows us to interleave a pair of necklaces of odd length:

Theorem 6. E(q, 2k, 2ℓ) ≥
 k

2


E(q, k, ℓ)2.

The proof of Theorem6 is analogous to that of Theorem3, except that a slightly different condition is used in the construction
of the set V . Here, V := {I(w1, w2) | w1, w2 ∈ W , ψ(w1) = 0, ψ(w2) <

k−1
2 }.

4.4. Necklace concatenation

Whenever two length ℓ necklaces share an (ℓ−1)-factor, the corresponding cycles in dB(q, ℓ) can be concatenated. This
is because the corresponding edge circuits in dB(q, ℓ− 1) have a common vertex, and can thus be joined to create a larger
circuit, which in turn gives a larger cycle in dB(q, ℓ). This relationship between necklaces turns out to be very useful, so
we construct a necklace adjacency graph N(q, ℓ). The q-ary length ℓ necklaces form the vertex set of N(q, ℓ), while pairs of
necklaces that share an (ℓ− 1)-factor are joined by an edge.

Consider any (connected) subtree S in N(q, ℓ). By applying the above operation for each edge in S, the cycles for each
necklace in S can be concatenated together to produce one long cycle, whose length is the sum of the sizes of the individual
necklaces. Hence if we find a spanning forest inN(q, ℓ)where each component subtree has k as the total size of its necklaces,
we can partition dB(q, ℓ) into k-cycles. If the forest does not span N(q, ℓ), this still gives a lower bound on the eBug number:
if there arem component subtrees in the forest, each with total necklace size k, then E(q, k, ℓ) ≥ m.
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Table 1
Example of interleaved necklaces. Eight 8-cycles from dB(4, 3)were used to produce these 256 16-cycles in dB(4, 6).

(0, 0): 0000003300333333 0003003303333030 0003033300303033 0303003000333033
(0, 1): 0100003201323333 0002013203333130 0102033301303032 0303013000323132
(0, 2): 0101003200333233 0002003302333131 0003023301313032 0203013100323033
(0, 3): 0101013200323332 0102003203323131 0002033201313132 0302013101323032
(0, 4): 0001013300323233 0103003202333031 0002023300313133 0203003101333032
(0, 5): 0100013301323232 0103013202323130 0102023201303133 0202013001333132
(0, 6): 0001003301333232 0003013302323031 0103023200313033 0202003100333133
(0, 7): 0000013201333332 0102013303323030 0103033200303132 0302003001323133
(1, 0): 1000002310233333 1003002313233030 1003032310203033 1303002010233033
(1, 1): 1100002211223333 1002012213233130 1102032311203032 1303012010223132
(1, 2): 1101002210233233 1002002312233131 1003022311213032 1203012110223033
(1, 3): 1101012210223332 1102002213223131 1002032211213132 1302012111223032
(1, 4): 1001012310223233 1103002212233031 1002022310213133 1203002111233032
(1, 5): 1100012311223232 1103012212223130 1102022211203133 1202012011233132
(1, 6): 1001002311233232 1003012312223031 1103022210213033 1202002110233133
(1, 7): 1000012211233332 1102012313223030 1103032210203132 1302002011223133
(2, 0): 1010002300332333 1013002303332030 1013032300302033 1313002000332033
(2, 1): 1110002201322333 1012012203332130 1112032301302032 1313012000322132
(2, 2): 1111002200332233 1012002302332131 1013022301312032 1213012100322033
(2, 3): 1111012200322332 1112002203322131 1012032201312132 1312012101322032
(2, 4): 1011012300322233 1113002202332031 1012022300312133 1213002101332032
(2, 5): 1110012301322232 1113012202322130 1112022201302133 1212012001332132
(2, 6): 1011002301332232 1013012302322031 1113022200312033 1212002100332133
(2, 7): 1010012201332332 1112012303322030 1113032200302132 1312002001322133
(3, 0): 1010102300233323 1013102303233020 1013132300203023 1313102000233023
(3, 1): 1110102201223323 1012112203233120 1112132301203022 1313112000223122
(3, 2): 1111102200233223 1012102302233121 1013122301213022 1213112100223023
(3, 3): 1111112200223322 1112102203223121 1012132201213122 1312112101223022
(3, 4): 1011112300223223 1113102202233021 1012122300213123 1213102101233022
(3, 5): 1110112301223222 1113112202223120 1112122201203123 1212112001233122
(3, 6): 1011102301233222 1013112302223021 1113122200213023 1212102100233123
(3, 7): 1010112201233322 1112112303223020 1113132200203122 1312102001223123
(4, 0): 0010103300232333 0013103303232030 0013133300202033 0313103000232033
(4, 1): 0110103201222333 0012113203232130 0112133301202032 0313113000222132
(4, 2): 0111103200232233 0012103302232131 0013123301212032 0213113100222033
(4, 3): 0111113200222332 0112103203222131 0012133201212132 0312113101222032
(4, 4): 0011113300222233 0113103202232031 0012123300212133 0213103101232032
(4, 5): 0110113301222232 0113113202222130 0112123201202133 0212113001232132
(4, 6): 0011103301232232 0013113302222031 0113123200212033 0212103100232133
(4, 7): 0010113201232332 0112113303222030 0113133200202132 0312103001222133
(5, 0): 1000103310232323 1003103313232020 1003133310202023 1303103010232023
(5, 1): 1100103211222323 1002113213232120 1102133311202022 1303113010222122
(5, 2): 1101103210232223 1002103312232121 1003123311212022 1203113110222023
(5, 3): 1101113210222322 1102103213222121 1002133211212122 1302113111222022
(5, 4): 1001113310222223 1103103212232021 1002123310212123 1203103111232022
(5, 5): 1100113311222222 1103113212222120 1102123211202123 1202113011232122
(5, 6): 1001103311232222 1003113312222021 1103123210212023 1202103110232123
(5, 7): 1000113211232322 1102113313222020 1103133210202122 1302103011222123
(6, 0): 0010003310332323 0013003313332020 0013033310302023 0313003010332023
(6, 1): 0110003211322323 0012013213332120 0112033311302022 0313013010322122
(6, 2): 0111003210332223 0012003312332121 0013023311312022 0213013110322023
(6, 3): 0111013210322322 0112003213322121 0012033211312122 0312013111322022
(6, 4): 0011013310322223 0113003212332021 0012023310312123 0213003111332022
(6, 5): 0110013311322222 0113013212322120 0112023211302123 0212013011332122
(6, 6): 0011003311332222 0013013312322021 0113023210312023 0212003110332123
(6, 7): 0010013211332322 0112013313322020 0113033210302122 0312003011322123
(7, 0): 0000102310333323 0003102313333020 0003132310303023 0303102010333023
(7, 1): 0100102211323323 0002112213333120 0102132311303022 0303112010323122
(7, 2): 0101102210333223 0002102312333121 0003122311313022 0203112110323023
(7, 3): 0101112210323322 0102102213323121 0002132211313122 0302112111323022
(7, 4): 0001112310323223 0103102212333021 0002122310313123 0203102111333022
(7, 5): 0100112311323222 0103112212323120 0102122211303123 0202112011333122
(7, 6): 0001102311333222 0003112312323021 0103122210313023 0202102110333123
(7, 7): 0000112211333322 0102112313323020 0103132210303122 0302102011323123

In the case when ℓ is prime, recall that most necklaces have size ℓ. Let N ′(q, ℓ) be the subgraph of N(q, ℓ) induced by the
size ℓ necklaces. Suppose that there is a perfect matching in N ′(q, ℓ): this is a spanning forest, and each component subtree
has total size 2ℓ. Hence concatenating the cycles for each pair of necklaces in the matching produces qℓ−q

2ℓ cycles in dB(q, ℓ),
each of length 2ℓ. Similarly, we may generalise this to larger multiples of ℓ:
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Proposition 3. Let ℓ be a prime. If there is a spanning forest of N ′(q, ℓ) in which each component subtree has t vertices, then
E(q, tℓ, ℓ) ≥

qℓ−q
tℓ , with equality if q < tℓ.

In particular, the existence of a Hamiltonian path in N ′(q, ℓ) is sufficient to apply Proposition 3 for any t that divides qℓ−q
ℓ

(removing every tth edge from the path produces the required forest). A Hamiltonian path in N(q, ℓ) is called a Gray code
for necklaces, and is conjectured to exist whenever q or ℓ is odd [22] (if both q and ℓ are even, a simple parity argument
reveals that N(q, ℓ) is bipartite with unequal parts). It is a trivial matter to transform the Hamiltonian path in N(q, ℓ) to
one in N ′(q, ℓ), since all neighbours of a constant necklace are adjacent to each other. For q = 2, there is also an existing
construction of a 2-Gray code for fixed density necklaces [25], which lists every necklace with a fixed number of 0s such that
consecutive necklaces differ in exactly two places (a 0 and 1 are exchanged).

4.5. Robot identification with necklaces

In some applications of robot identification, orientation information is either not required or can be obtained through
different means [26,27]. This relaxes the conditions necessary to obtain a valid colouring of eBugs, since a particular colour
sequencemay appearmore than once on a single eBug. In the de Bruijn graph, this amounts to finding themaximumnumber
of disjoint closed k-walks (instead of k-cycles). When ℓ is a divisor of k, there is an easy solution that turns out to be the best
possible; this is a direct corollary of Golomb’s conjecture.

Proposition 4. If ℓ is a divisor of k, then the maximum number of pairwise disjoint closed k-walks in dB(q, ℓ) is Z(q, ℓ), the
number of q-ary length ℓ necklaces.

Proof. Golomb’s conjecture, which was proved by Mykkeltveit [19], states that the maximum number of pairwise disjoint
cycles (of any length) in dB(q, ℓ) is Z(q, ℓ). Since each closedwalk contains a cycle, there are atmost Z(q, ℓ) pairwise disjoint
closed k-walks in dB(q, ℓ).

Now consider any length ℓ necklace. The size t of this necklace must divide ℓ and hence k, so the corresponding t-cycle
in dB(q, ℓ) can be traversedmultiple times to obtain a closed k-walk. Thus there are Z(q, ℓ) pairwise disjoint closed k-walks
in the graph. �

5. Concluding remarks

The theorems presented in Sections 3 and 4 focus on finding large eBug colourings to obtain bounds on the eBug
number E(q, k, ℓ). In particular, we concentrated on constructions that yield optimal colourings to support Conjecture 1.
The algebraic construction in Theorem 1, and its corresponding extension in Corollary 1, produce q eBugs ofmaximal size for
any q and ℓ. The combinatorial results in Section 4 increase the number of eBugs bymoving to a larger de Bruijn graph. These
results can even produce eBug colourings for practical applications: for example, we have E(2, 16, 5) = 2 by Theorem 1, so
E(4, 16, 5) = 64 by Theorem 2. The current eBugs have 16 LEDs, a camera can distinguish four colours in an image quite
easily, and five consecutive LEDs are visible in practice, so it is possible to construct a network of 64 uniquely identifiable
eBugs. Also, Theorem 3 can be used to significantly increase the number of eBugs without increasing the number of colours,
q. Moreover, it keeps the ratio k

ℓ
constant, which is a reasonable assumption when designing such a network (since the

camera can see a fixed arc of the circle of LEDs).
Unfortunately, the only way to produce many eBugs (more than q) with our results is by applying Theorem 2 or

Theorem 3, which necessarily increase either q, the number of colours, or ℓ, the number of consecutive visible LEDs. The
major remaining gap appears to be for prime q and ℓ, with k < qℓ−1, since the multiplying/interleaving constructions
cannot produce them.

Ideally, we would like to be able to have many small eBugs (small number of LEDs) with a small number of colours. For
example, we would like to show that E(q, qℓ−i, ℓ) = qi when ℓ is large enough (for each i). Probabilistic arguments may be
useful in finding such colourings, but a constructive approach is preferable for applications to robot networks (the search
space becomes too large even for small practical examples, and in many cases the colourings appear to be quite rare).

Solving Problem 1 is much harder, since there are no optimal colourings in the cases not covered by Conjecture 1.
Improving the lower bounds in these cases, however, is likely to be a much easier task. We have shown that near-optimal
colourings exist in many cases.
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