
GATEWAY MULTIPOINT RELAYS – AN MPR-BASED BROADCAST ALGORITHM FOR
AD HOC NETWORKS

Ou Liang, Y. Ahmet Şekercioğlu, Nallasamy Mani

Centre for Telecommunication and Information Engineering

Monash University, Melbourne, VIC 3168, Australia

{Ou.Liang, Ahmet.Sekercioglu, N.Mani}@eng.monash.edu.au

ABSTRACT

Broadcast is an essential part of ad hoc network routing protocols.
An efficient broadcast algorithm can greatly reduce the number of
retransmissions in a network, thus decreasing the number of packet
collisions and overall power consumption. In this paper, we pro-
pose the Gateway Multipoint Relays (GMPR) broadcast algorithm,
which combines the Multipoint Relay (MPR) and the maximal in-
dependent set (MIS) concepts to calculate a connected dominating
set (CDS) in the network. Our algorithm, which is fully local-
ized and distributed, can significantly reduce the redundant broad-
casting in the network while keeping the cost of computation low.
The GMPR constructs a CDS in two phases. In the first phase,
an MIS is established where nodes in the MIS are referred to as
dominators, and they form the gateways in the network. In the
second phase, each gateway generates some connectors to con-
nect other gateways based on the original MPR algorithm. Then,
a self-pruning procedure is applied to each gateway to eliminate
redundant gateways after the CDS construction. In this paper, we
show that our algorithm has O(Δ2) time complexity and O(n)
message complexity, where Δ is the maximum node degree and
n is the total number of nodes in the network. Simulation is con-
ducted to compare our new algorithm with two leading MPR-based
CDS broadcast algorithms. The results show that our algorithm
performs better than those algorithms in terms of the size of the
generated CDS.

1. INTRODUCTION

Mobile Ad Hoc networks (MANETs) [1] have gained much atten-
tion in recent years due to their self-organizing and infrastructure-
less characteristics. Each node in a MANET can act as a router
to receive and forward packets, allowing seamless communica-
tions between devices. Hence, MANETs have great application
potential in various scenarios such as battle field communications,
emergency services, disaster recovery, environmental monitoring,
personal entertainment and mobile conferencing [2].

Broadcast is an important data transmission method used in
MANETs to disseminate data and control messages. The goal of
a broadcast algorithm is to maximize the node reachability in the
network while keeping the computation and communication over-
heads to a minimum. However, the wireless nature of MANETs
make it difficult to design an efficient broadcast algorithm. Ev-
ery message sent by a node can be heard by all its adjacent nodes,
and thus, only a subset of nodes in the network is needed to re-
lay a broadcast message. Furthermore, in mobile ad hoc networks,

nodes can randomly move around, leave the network or switch off,
and new nodes may join the network unexpectedly. These charac-
teristics cause the network topology to change frequently. There-
fore, a broadcast algorithm that requires the global information of
a network may be unstable and complex.

One approach for doing efficient broadcast is to choose a small
subset of all available nodes, called connected dominating set (CDS)
in the network based on local information such as the local topol-
ogy. A dominating set (DS) is a subset of nodes in the network
where every node in the network is either a member of the subset,
or a neighbor of at least one member of the subset. A DS is called
a CDS if all nodes in the DS are connected. Only nodes in a CDS
can retransmit packets while other nodes can only receive them. In
this kind of localized approach, a node determines the forwarding
state of itself and/or its neighbors only based on its neighborhood
information. A CDS constructed in such a localized manner can
adapt to frequent topology changes, thus ensuring the property of
stability.

The original Multipoint Relays (MPR) concept proposed in [3]
is a distributed localized broadcast algorithm, which is compu-
tationally lightweight. In this algorithm, each node collects the
two-hop neighborhood information (such as node ID) from its one-
hop neighbors and determines the forwarding state of its one-hop
neighbors based on this information. Specifically, a node knows its
one-hop neighbors and neighbors of these one-hop neighbors after
it collects the two-hop neighborhood information. Then it selects
a subset of nodes from its one-hop neighbors as the forwarding
nodes to cover all its two-hop neighbors. Nodes that have been
chosen as forwarding nodes are called MPRs.

The original MPR algorithm is source dependent, that is, an
MPR will only forward a packet that comes from its selectors
(nodes that select it as an MPR). A selector and its MPRs form
a local CDS to cover nodes within two hops away from the se-
lector, and eventually, all nodes in the network are covered by a
number of local CDSs. This rebroadcast process requires the last
hop knowledge to indicate the source of a packet, which increases
the complexity of the algorithm. To solve this problem, two MPR-
based CDS algorithms have been proposed in sequence. In [4],
Adjih, Jacquet, and Viennot presented a source-independent MPR,
which generates a CDS in the network based on the original MPR
algorithm. Later, Wu [5] further enhanced the source-independent
MPR to reduce the size of the CDS. In this paper, we propose a
new MPR-based broadcast algorithm which can effectively gen-
erate a CDS in a given network. We will show in Section 5 that,
compared with Adjih’s and Wu’s algorithms, our new algorithm
produces a smaller size CDS in the network.

1-4244-0411-8/06/$20.00 ©2006 IEEE.

Table 1. NOTATION

n Total number of nodes in the network.
V The set that contains all nodes in the network.
E The set that contains all edges in the network.

N1(u) The one-hop neighbor set of node u, which con-
tains all nodes that are one hop away from u.

N2(u) The two-hop neighbor set of node u, which con-
tains all nodes that are two hops away from u.

MPR(u) The MPR set of node u, which contains all MPRs
selected by node u.

Du The node degree of node u, which is the cardinal-
ity of N1(u).

Δ The maximum node degree in a given network.

The rest of the paper is organized as follows. In Section 2,
we provide preliminaries and review the original MPR algorithm.
Section 3 presents the details of our MPR-based CDS broadcast
algorithm. In Section 4, we prove the correctness and provide the
time and message complexity of our algorithm. Section 5 presents
the simulation results. Finally, we offer our concluding remarks in
Section 6.

2. PRELIMINARIES

In our algorithm, we assume that each node has an unique ID (such
as an IP address) and it knows IDs of all its one-hop and two-hop
neighbors, which can be obtained from the “HELLO” messages
transmitted periodically by each node in the network. We further
assume that all nodes are fixed and have the same transmission
range. The maintenance of a CDS in a mobile environment is left
for future study.

Here we provide some definitions for later use in this paper.
The notation used is presented in Table 1.

2.1. DS (Dominating Set) and CDS (Connected Dominating
Set)

For a given connected graph G = (V, E), a dominating set (DS)
is a subset V ′ of V , where for each node u of V , u is either in V ′

or at least one neighbor of u is in V ′. A DS is called a CDS if the
subgraph induced by nodes in the DS is connected. A node in a
CDS retransmits every packet it receives for the first time.

2.2. IS (Independent Set) and MIS (Maximum Independent
Set)

For a given connected graph G = (V, E), an independent set (IS)
is a subset V ′ of V such that for any pair of nodes in V ′, there is
no connection between them. A maximum independent set (MIS)
is the largest IS for a given graph G, where no other nodes can be
added into it.

2.3. MPR (Multipoint Relay)

The goal of the Multipoint Relay (MPR) is to reduce the flooding
of broadcast packets in a network by locally minimizing retrans-
missions. In the MPR algorithm, each node periodically sends out

Fig. 1. An example of working of the original MPR algorithm.

a “HELLO” message to all its one-hop neighbors, which contains
its one-hop neighborhood information. This message will not be
retransmitted by other nodes. A node has the knowledge of its
one-hop and two-hop neighbors after it receives these “HELLO”
messages.

Based on this neighborhood information, each node u selects
some forwarding nodes from its one-hop neighbor set N1(u) to re-
transmit broadcast packets, so that all nodes in u’s two-hop neigh-
bor set N2(u) can receive these packets. The selected forwarding
nodes are called Multipoint Relays (MPRs), and u is called the
selector of these MPRs. An MPR will retransmit a message only
once if the message is from one of its selectors and it is received
for the first time. Node u and its MPRs form a local CDS that
cover all nodes up to two hops away from u.

A simple greedy algorithm is used in [3] to calculate the MPR
set for a given node u. Assume that a node v is a one-hop neigh-
bor of u. We use the phrase “u covers v” if v ∈ N1(u). Let
Pv = |{w ∈ N1(v)|v ∈ N1(u) and w ∈ N2(u)}| denote the
preference of node v, which is the number of two-hop neighbors of
u that node v can cover. The greedy algorithm operates as follows:

Greedy Algorithm:

• Add nodes in N1(u) to MPR(u) if they are the only neigh-
bors of some nodes in N2(u). Then update u’s neigh-
borhood information by removing MPRs and the two-hop
neighbors they covered from N1(u) and N2(u) respec-
tively.

• If there are still some uncovered two-hop neighbors, add a
one-hop neighbor to MPR(u) if it covers the largest num-
ber of uncovered two-hop neighbors. If there is a tie, choose
a node with larger P as the MPR. In case of another tie, the
node with a smaller node ID is selected.

Figure 1 shows an example of the operation of the original
MPR algorithm. Initially, nodes 1 and 3 are selected as MPRs
since they are the only neighbors of the two-hop neighbor nodes a
and d of node s. After node s updates its neighborhood informa-
tion, both nodes 5 and 7, which cover two-hop neighbor set {f , g,
h, i} and {j, k, i, m} respectively, have the largest coverage of
uncovered two-hop neighbors. Because nodes 5 and 7 both have
a P of 4, node 5 is chosen as the MPR based on the tie-break
procedure. Among the remaining one-hop neighbors, node 7 cov-
ers the largest number of uncovered two-hop nodes, and thus it
is selected as the MPR. Therefore, the MPR set of the node s is
MPR(s) = {1, 3, 5, 7}.

3. GMPR ALGORITHM DESCRIPTION

The process of finding a CDS with our algorithm can be described
in two phases. In the first phase, an MIS is constructed in the net-
work where nodes in the MIS are called dominators, and nodes
covered by the dominators are referred to as dominatees. These
dominators form the DS (dominating set) and they operate as the
gateways in the network. In the second phase, each gateway (dom-
inator node) calculates an MPR set to cover all its two-hop neigh-
bors. However, not all MPRs need to forward packets in the net-
work. An MPR determines its forwarding state based on the node
degree of its MPR selectors. An MPR is actually a forwarding
MPR if it is selected by a dominator whose node degree is the
largest among all this MPR’s one-hop neighbors. The forwarding
MPRs are also in the DS and they perform as connectors of the
gateways. We will prove in the next section that the gateways and
the connectors generated in our algorithm can form a CDS in the
network. After the CDS construction, a self-pruning procedure is
applied to each gateway to remove the redundancy in the CDS.

Similar to the original MPR, our new algorithm also requires
“HELLO” messages to be exchanged periodically in the network.
The only extra information included in a “HELLO” message for
our algorithm is the dominating state of the node that sends the
“HELLO” message. A node can be in one of the four dominating
states: dominator, dominatee, connector and white node. These
states can be easily represented using only two bits in a “HELLO”
message. Hence, this extra cost is really marginal and can be ig-
nored. The remains of this section describes our algorithm in de-
tail.

3.1. Generating gateways

This phase generates an MIS in the network where nodes in the
MIS form the gateways. Each node in the network initializes its
dominating state as the white node, and then they change to either
the dominator state or the dominatee state subsequently. The con-
nector state can only be entered from the dominatee state. Nodes
that change to the dominator state broadcast a “HELLO” message
immediately to inform its one-hop neighbors. Figure 2 illustrates
the state transition process of our algorithm. Gateways are con-
structed based on the following steps:

• A white node u announces itself as a dominator if it has the
largest node degree Du among it’s white node neighbors
(neighbors in the white node state) or it has no white node
neighbors and dominators around.

• A white node u changes to the dominatee state if it receives
a “HELLO” message from a dominator v, and v has a larger
node degree Dv than u.

• A dominator u becomes a dominatee if a “HELLO” mes-
sage is received from another dominator v, and v has a
larger node degree Dv than u.

• A dominatee or a connector changes back to the white node
state if it has lost all dominators around.

Node ID is used whenever a tie happens in above steps. Nodes
in the dominator state formulate an MIS in the network since no
two adjacent nodes will be marked as dominators, and these dom-
inators operate as gateways to relay packets throughout the net-
work.

Fig. 2. The state transition diagram of a node in our algorithm.

3.2. Generating a CDS

In this phase, each gateway calculates an MPR set based on the
original MPR algorithm discussed in the previous section. Due
to the limited space, the MPR selection procedures are not re-
peated here. Similar to the original MPR algorithm, node IDs of
selected MPRs are included in the “HELLO” messages sent by
gateways. Upon receiving these “HELLO” messages, a dominatee
determines its dominating state based on the following steps:

• A dominatee u changes its state to the connector if it is
selected as an MPR by a dominator v, which has the largest
D among all u’s dominators.

• A connector u returns to the dominatee state if u’s largest
dominator (dominator with the largest D) does not choose
it as the MPR.

Only nodes in the connector state retransmit packets and they
ensure the connectivity of gateways. Finally, a CDS is constructed
combining all gateways and connectors in the network.

3.3. Self-pruning procedure

A dominator u eliminates itself from the CDS if it has a connector
v that is in N1(u), and v can cover all u’s one-hop neighbors. An
eliminated dominator u is referred to as a silent-dominator, which
still announces itself as the dominator and calculates the MPR set.
However, u will not retransmit packets anymore.

The self-pruning procedure can effectively reduce the number
of gateways in the network, thus further limiting the size of the
CDS generated in our algorithm.

Figure 3 demonstrates an example of constructing a CDS us-
ing our new algorithm. The letter near each node represents the
node ID, and arrows represent “HELLO” messages and their send-
ing directions. A CDS is constructed in following steps:

1. Initially, all nodes in this network are in the white node
state as shown in Figure 3(a). After knowing its neighbor-
hood information, node g announces itself as the dominator
because it has a larger node degree D than all its white node
neighbors. Then g calculates an MPR set to cover its two-
hop neighbors. Based on the original MPR algorithm, node
b is selected as the MPR due to the fact that it covers g’s
only two-hop neighbor node a, and b has a smaller node
ID than node d. After the MPR calculation, node g im-
mediately broadcasts a “HELLO” message to inform all its
one-hop neighbors about its new dominating state and its
MPR decision. The above procedures are shown in Figure
3(b).

2. Upon receiving g’s “HELLO” message, g’s one-hop neigh-
bors announce themselves as dominatees, and node b fur-
ther changes to the connector state because its only adja-

cent dominator g has chosen it as an MPR. Then all domi-
natees immediately broadcast a “HELLO” message to indi-
cate their new dominating states to their one-hop neighbors.
After receiving the “HELLO” messages from both domina-
tee node b and d, node a declares itself as the dominator be-
cause it has no white nodes around. Then it also calculates
an MPR set to cover its two-hop neighbors, which are node
f , g and h in this case. Obviously, node a will selects node
d as the MPR because it covers more two-hop neighbors of
a than node b. After the MPR calculation, dominator a also
sends out a “HELLO” message to all its one-hop neighbors
indicating its dominating state and its MPR decision. Fig-
ure 3(c) illustrates above processes.

3. Upon receiving the “HELLO” message from a, both node b
and d have the knowledge of this new dominator, and node
d also notices that it is chosen as an MPR by a. However,
node d ignores a’s MPR decision due to the fact that a is
not the largest dominator around d (Da is smaller than Dg).
We present this in Figure 3(d) by putting a cross on the cor-
responding arrow. Therefore, only node b operates as the
connector to connect dominator a and g. At the same time,
both the dominators run the self-pruning procedure to eval-
uate themselves, and consequently, a is removed from the
CDS and becomes a silent-dominator because all its one-
hop neighbors can be covered by its connector b.

(a) (b)

(c) (d)

Fig. 3. An example of constructing a CDS using GMPR.

4. PROOF OF CORRECTNESS

In this section, we verify the correctness of our algorithm and we
also provide its time and message complexity.

4.1. Proof of correctness

The correctness of our algorithm is proven in two parts. First, we
prove that the gateways generated in our algorithm cover all nodes
in the network, and thus they form a DS (dominating set). Second,

we prove that the DS consists of the gateways and the connectors
generated in our algorithm is indeed a CDS.

Fig. 4. Illustration of the proof of Lemma 1.

Lemma 1. Let H be the set of gateways generated in our algo-
rithm. For each node u in the network, u is either in H or a neigh-
bor of at least one node in H .

Proof. This lemma essentially indicates that H is actually a DS
in the network. We prove this lemma by contradiction. Assume
that there is a node w, which is not in H or has any neighbor
in H . Then w must be at least two hops away from any given
gateway in the network. This situation is shown in Figure 4, where
node s and d are gateways in H , and the dash circle represents the
node transmission range. In this network, node w will eventually
announce itself as a dominator based on our algorithm, because
it dos not have any dominator or white node nearby. Therefore,
node w is actually a gateway and it should be in H . This result
contradicts to the assumption, and thus it proves the lemma.

Lemma 2. For any given gateway s and its nearest gateway d, s
is at most three hops away from d.

Proof. This can be easily demonstrated based on Lemma 1. As-
sume that s is four hops away from d as shown in Figure 4. In such
a case, node w will elect itself as the gateway. Therefore, d is not
the nearest gateway of s and the lemma is proven.

Lemma 3. All gateways are connected through the connectors
generated in our algorithm.

Proof. We prove this by contradiction. Let u denote the gateway
that does not have any connectors to other gateways. Based on
Lemma 2, u is at most three hops away from its nearest gateways.
If u has some gateways that are two hops away as shown in Figure
5(a), let W denote the set that contains u and u’s two-hop away
gateways, there must be a node in W that has the largest node
degree D (use node ID to break a tie), and it will choose at least
one node in N1(u) as the MPR to cover its two-hop neighbors.
Based on our algorithm, the selected MPR is actually a connector,
and thus, u is connected to at least one two-hop away gateway.

If u only has three-hop away gateways as shown in Figure
5(b). u selects some nodes in N1(u) as MPRs to cover all nodes in
N2(u), and based on our algorithm, these selected MPRs are actu-
ally connectors. Similarly, the three-hop away gateways also select
some nodes in N2(u) as MPRs to cover their two-hop neighbors,
and at least one MPR they selected becomes a connector. There-
fore, connectors in N2(u) can be reached by at least one connector
in N1(u), and thus u is connected to at least one three-hop away
gateway through two connectors.

Theorem 1. Given a connected graph G = (V, E), a node set
V ′, which consists of gateways and connectors generated in our
algorithm, is a CDS of G.

Proof. The theorem is proven instantly by combining Lemma 1
and Lemma 3.

Fig. 5. Illustration of the proof of Lemma 3.

Theorem 2. After the self-pruning procedure, the connectors and
the remaining dominators generated in our algorithm still form a
CDS.

Proof. Because a silent-dominator still announces itself as the dom-
inator and calculates an MPR set, its elimination from the CDS
does not affect the construction of connectors. Furthermore, the
connector that covers all one-hop neighbors of a silent-dominator
can still ensure the connectivities of other connectors of that silent-
dominator. Therefore, the property of the CDS is maintained after
the self-pruning procedure.

4.2. Time and Message complexity

Theorem 3. Our new distributed broadcast algorithm for con-
structing a CDS has an O(Δ2) time complexity and O(n) message
complexity.

Proof. The time complexity for constructing an MIS in our al-
gorithm is O(n), which can be proven using the similar method
in [6]. For each gateway, it takes maximum O(Δ2) time to cal-
culate an MPR set, and it also takes the same time to run the self-
pruning procedure. However, we exclude the self-pruning proce-
dure from the overall time complexity calculation, because it is
operated after the CDS construction, and it can be run simultane-
ously by all gateways. It has also been proven in [7] that at most
5 dominators can connect to a given dominatee node, and thus, a
constant time is needed for a dominatee to determine whether it is
a connector. Among above procedures, we estimate that the time
for the MPR calculation will be the dominant part of the overall
time consumed in our algorithm. Hence, the time complexity of
our algorithm is O(Δ2).

During the CDS construction of our algorithm, each gateway
sends exactly one “HELLO” message to its one-hop neighbors in
order to inform its dominating state and its MPR decision. Upon
receiving these “HELLO” messages, each dominatee or connec-
tor also sends one “HELLO” message to its one-hop neighbors.
Hence, at most five “HELLO” messages will be sent for each dom-
inatee or connector during the CDS construction. Therefore, the
total message complexity of our algorithm is O(n).

5. SIMULATION RESULTS

In this section, we present simulation results that compare the av-
erage size of the CDS generated in our new algorithm, Adjih’s
source-independent MPR(SIMPR) [4] and Wu’s enhanced MPR
(EMPR) [5]. For the sake of comparison, we also present the re-
sults of our algorithm without the self-pruning procedure and with
the self-pruning procedure separately, and we denote them as the
“GMPR” and “GMPR pruning” respectively.

(a) Transmission range R = 25

(b) Transmission range R = 50

Fig. 6. The number of nodes in the CDS vs. the total number of
nodes in the network.

In our simulations, each node has an equal transmission range
R, and a pair of nodes can be connected if the distance between
them is less than R. The topologies in our simulations are gener-
ated by randomly distributing a certain number of nodes in a 100
× 100 2-dimensional space. To ensure the connectivity of the net-
work, each node is randomly placed within the transmission range
of a previously located node, which is also chosen randomly. Two
transmission ranges (R = 25 and 50) are used in our simulations to
create sparse and dense networks, and for each transmission range,
the total number of nodes N in the network varies from 20 to 100
with an interval of 10. A sufficient number of simulation runs are
conducted for each N to achieve a 95% confidential interval within
a ±5% margin. The averaged results are displayed in Figures 6(a)
and 6(b).

From the simulation results, we can see that our algorithm
without the self-pruning procedure has the similar performance as
the EMPR in both transmission ranges. After applying the self-
pruning procedure, our algorithm improves significantly and per-
forms much better than the two proposed algorithms in both trans-
mission ranges. It is also worth noting that our algorithm with the
self-pruning procedure works more effectively in the dense net-
work (when R = 50), where it reduces the size of the CDS gen-

erated in the EMPR by 26% on average. This is mainly due to the
fact that in the dense network, the number of the gateways gen-
erated in our algorithm is reduced when the number of one-hop
neighbors of a node increases. Furthermore, a longer transmis-
sion range can also increase the chance for a connector to cover all
one-hop neighbors of a gateway, thus eliminating more redundant
gateways in the CDS.

6. CONCLUSION

In this paper, we have proposed a new distributed broadcast al-
gorithm for constructing a connected dominating set (CDS) in a
given network. Our algorithm is based on the concepts of the
Multipoint Relay (MPR) and the minimum independent set (MIS),
where nodes in the MIS perform as gateways in the network and
they calculate MPRs to connect each other. A self-pruning method
is also introduced to further eliminate redundant gateways in the
CDS. The simulation results show that our new algorithm produces
a smaller size CDS than the source-independent MPR [4] and the
enhanced MPR [5] in both sparse and dense networks.

The future work is to compare our algorithm with other MIS-
based CDS broadcast algorithms, and we are also going to investi-
gate the performance of our algorithm in a mobile environment.

7. REFERENCES

[1] “IETF mobile ad hoc network working group.” [On-
line]. Available: http://www.ietf.org/html.charters/manet-
charter.html

[2] L. Yang, S. Conner, X. Guo, M. Hazra, and J. Zhu. (2003,
Oct.) Common wireless ad hoc network usage scenarios. In-
ternet Draft. [Online]. Available: http://www.flarion.com/ans-
research/Drafts/draft-irtf-yang-ans-scenarios-00.txt

[3] A. Laouiti, A. Qayyum, and L. Viennot, “Multipoint relay-
ing: an efficient technique for flooding in mobile wireless net-
works,” in 35th Annual Hawaii International Conference on
System Sciences HICSS’2001.

[4] C. Adjih, P. Jacquet, and L. Viennot, “Computing connected
dominated sets with multipoint relays,” Technical Report,
INRIA, Oct. 2002. [Online]. Available: www.inria.fr/rrrt/rr-
4597.html

[5] J. Wu, “An enhanced approach to determine a small forward
node set based on multipoint relays,” in IEEE Transactions on
Parallel and Distributed Systems, Sep. 2002, pp. 866–881.

[6] K. Alzoubi, P.-J. Wan, and O. Frieder, “Message optimal con-
nected dominating set construction for routing in mobile ad
hoc networks,” in Proceedings of Third ACM int’l Symp. Mo-
bile Ad Hoc Networks and Computing (MobiHoc ’02), 2002.

[7] K. Alzoubi, X.-Y. Li, Y. Wang, P.-J. Wan, and O. Frieder, “Ge-
ometric spanners for wireless ad hoc networks,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 14, pp. 408–
421, April 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

