
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Holographic Graph Neuron: A Bioinspired
Architecture for Pattern Processing

Denis Kleyko, Evgeny Osipov, Alexander Senior, Asad I. Khan, and Yaşar Ahmet Şekercioǧlu

Abstract— In this paper, we propose a new approach to
implementing hierarchical graph neuron (HGN), an architecture
for memorizing patterns of generic sensor stimuli, through
the use of vector symbolic architectures. The adoption of a
vector symbolic representation ensures a single-layer design while
retaining the existing performance characteristics of HGN. This
approach significantly improves the noise resistance of the HGN
architecture, and enables a linear (with respect to the number
of stored entries) time search for an arbitrary subpattern.

Index Terms— Associative memory (AM), holographic graph
neuron (HoloGN), hyperdimensional computing, pattern recog-
nition, vector symbolic architectures (VSAs).

I. INTRODUCTION

GRAPH neuron (GN) is an approach for memorizing
patterns of generic sensor stimuli for later template

matching [2], [3]. It is based on the hypothesis that a better
associative memory (AM) resource can be created by changing
the emphasis from high-speed sequential CPU processing to
parallel network-centric processing. In contrast to contempo-
rary machine-learning approaches, GN allows the introduction
of new patterns in the learning set without the need for retrain-
ing. While doing so, it exhibits a high level of scalability,
i.e., its performance and accuracy do not degrade, as the
number of stored patterns increases over time.

Vector symbolic architectures (VSAs) [4] are a bioinspired
method of representing concepts and their meanings for
modeling cognitive reasoning. It exhibits a set of unique
properties which make it suitable for the implementation of
artificial general intelligence [5]–[7] and hence the creation of
complex systems for sensing and pattern recognition without
reliance on complex computation. In the biological world,
extremely successful applications of such approaches can be
found. One example is the ordinary house fly: it is capable of
conducting very complex maneuvers, even though it possesses

Manuscript received January 26, 2015; revised February 11, 2016; accepted
February 21, 2016. This work was supported by the Swedish Foundation
for International Cooperation in Research and Higher Education under
Grant IG2011-2025.

D. Kleyko and E. Osipov are with the Department of Computer Science
Electrical and Space Engineering, Luleå University of Technology,
Luleå 971 87, Sweden (e-mail: denis.kleyko@ltu.se; evgeny.osipov@ltu.se).

A. Senior is with the Department of Electrical and Computer Systems
Engineering, Monash University, Clayton, VIC 3800, Australia (e-mail:
alexander.senior@monash.edu).

A. I. Khan is with the Clayton School of Information Technology, Monash
University, Clayton, VIC 3800, Australia (e-mail: asad.khan@monash.edu).

Y. A. Şekercioǧlu is with the Heudiasyc Laboratory, Compiègne University
of Technology, Compiègne 60200, France (e-mail: asekerci@ieee.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2016.2535338

a very little computational capacity.1 Another interesting bio-
logical example is the compound eyes of arthropods. These
compound eyes consist of a large number of sensors with
limited and localized processing capabilities for performing
relatively complex sensing tasks [9].

This paper presents contributions in two domains: the orga-
nization of AM and the properties of connectionist distributed
representation. In the first area, this paper introduces a novel
bioinspired architecture, called holographic GN (HoloGN), for
one-shot pattern learning, which is built upon GN’s flexible
input encoding abstraction and the strong reasoning capa-
bilities of the VSA representation. In the second area, this
paper extends the understanding of the performance properties
of distributed representation, which opens the way for new
applications.

This paper is structured as follows. Section II places
HoloGN in the scope of AM research. Section III presents
an overview of the work related to the matter presented
in this paper. The background information on the theories,
concepts, and approaches used in HoloGN is described in
Section IV. Sections V–VII present the main contribution of
this paper, the design of the HoloGN architecture, and its
performance characteristics. Finally, the conclusion is drawn
in Section VIII.

II. HoloGN IN THE SCOPE OF ASSOCIATIVE

MEMORY RESEARCH

This section presents a discussion which places HoloGN
in the scope of other AM approaches. AM is designed for
applications requiring fast pattern matching. Compared with
random access memory in modern computing architectures,
where the goal is to retrieve the content of a certain place in
the memory by supplying the address of this place, the goal
of the AM is different. The cue to the memory is a pattern in
a generic sense,2 which is stored in memory, either entirely or
in parts. The task is to search the entire memory for the best
matching entry. On a very high level, the taxonomy of AM
can be divided into localist and distributed approaches.

Localist-based AM models [10] rely on the so-called grand-
mother cell hypothesis, where each part of a pattern considered
by the model is represented with a single neuron. In studies of

1In [8], house fly’s properties are compared and contrasted with an advanced
fighter plane as follows: “Whereas the F-35 Joint Strike Fighter, the most
advanced fighter plane in the world, takes a few measurements—airspeed, rate
of climb, rotations, and so on and then plugs them into complex equations,
which it must solve in real time, the fly relies on many measurements from
a variety of sensors but does relatively little computation.”

2The term pattern is used here to represent a set of (heterogeneous) values
or concepts that repeat over time to form an experience of an artificial system.

2162-237X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

perception, such models, in spite of known criticisms, may be
plausible in certain biological systems in which a wide range
of neurons prefer specific stimuli; for example, in [11], it was
shown that a population of a few tens of neurons in a monkey’s
brain was selectively responsive to different features of their
body.

The second broad class of AM models, which are based
on distributed representations, opposes the localist AMs by
suggesting that for implementing association-based operations
on structured information, it is implausible to have dedicated
neurons for each element of the structure. In distributed
representation theory, a specific stimulus is coded by a unique
pattern of activity over a group of neurons.

The work presented in this paper has its roots and inspiration
in two specific models of the distributed AM: sparse distrib-
uted memory (SDM) [12] and hierarchical GN (HGN) [2].
SDM is a mathematical model of human long-term memory,
which is used for storing and retrieving large amounts (in the
order of 21000 bits) of information. Its two main principles
are the aggregation of similar stimuli based on the statistical
similarity of their encoded representations and reducing the
overlap between the representations by storing them sparsely
over a huge memory space. SDM has been extensively applied
to pattern recognition [13] as the model for implementing AM
in the context of cognitive computing architectures [14], as
well as its demonstrated suitability for approximating Bayesian
inference [15]. One of the unsolved challenges attributed to
SDM is the so-called encoding problem, i.e., the problem of
how to encode stimuli in the distributed representation [16].

HGN can be classified as a distributed AM in the sense that
it models a stimulus as a graph of activities of multiple ele-
mentary neurons. Note that in HGN, the definition of a neuron
is simplified: it is modeled as an array of possible values taken
from a finite alphabet of discrete values. Without discussing
the biological plausibility of this model, it is applicable in
many practical real-world scenarios. For example, all current
sensing devices are characterized by having a finite operat-
ing range, and quantization techniques (i.e., representing the
level of the sampled continuous signal in a finite number of
levels) suggest that this model is feasible. In practice, this
model of a neuron and an interconnected network of them
enables the lightweight implementation of AM-based sensor
networks using low-end and power-constrained computing
devices.

The work presented in this paper provides a step toward
addressing the encoding problem of SDM. In particular,
it demonstrates that a simple (in the computational sense)
but usable model of a neuron from the HGN approach
leads to the practical implementation of an AM using high-
dimensional (HD) representations. By doing so, we elimi-
nate the need to maintain a graph hierarchy by applying
the HD representations and mathematical apparatus of SDM
for modeling congregations of memories based on statistical
similarities between the encoded concepts. As a result, the
encoding of an acquired heterogeneous sensory stimulus not
only preserves the properties of the original model but also
paves the way to an entirely new class of applications, such as
in [17] and [18].

III. RELATED WORK

AM is a subdomain of artificial neural networks, which
utilizes the benefits of content-addressable memory [19] in
microcomputers. The AM concept was originally developed in
an effort to utilize the power and speed of existing computer
systems for solving large scale and computationally intensive
problems by simulating biological neurosystems.

The HGN approach [2] is a type of AM which signifies
the hierarchical structure in its implementation. Hierarchical
structures in AM models are of interest, as these have been
shown to improve the rate of recall in pattern recognition
applications. The distributed HGN scheme also allows for
better control of the network resources. This scheme compares
well with contemporary approaches, such as self-organizing
map and support vector machine in terms of speed and
accuracy.

The VSAs were introduced in [5] as a class of connectionist
models that use hyperdimensional vectors (i.e., vectors of
several thousand elements) to encode structured information
as a distributed or holographic representation. In this tech-
nique, the structured data are represented by performing basic
arithmetic operations on field-value tuples. Distributed repre-
sentations of data structures are an approach actively used in
the area of cognitive computing for representing and reasoning
upon semantically bound information [4], [20]. The cognitive
capabilities achievable using VSAs have been demonstrated
by creating systems capable of solving Raven’s progressive
matrices [21], [22] and via the imitation of concept learning
in honey bees [23], [24].

In [25], a VSA-based knowledge-representation architecture
is proposed for learning arbitrarily complex, hierarchical,
and symbolic relationships (patterns) between sensors and
actuators in robotics. Recently, the theory of hyperdimensional
computing, and VSA in particular, has been adopted for
implementing novel communication protocols and architec-
tures for collective communications in machine-to-machine
communication scenarios [26], [27]. The first work demon-
strates the unique reliability and timing properties essential in
the context of industrial machine-to-machine communications.
The latter work shows the feasibility of implementing collec-
tive communications using the current radio technology. This
paper presents an algorithmic ground for further design of the
distributed HoloGN in addition to the architecture presented
in [26].

IV. OVERVIEW OF ESSENTIAL CONCEPTS AND THEORIES

A. Hierarchical Graph Neuron

Fig. 1 shows the HGN approach. Consider only the bottom
layer of the construction without the hierarchy of upper nodes;
this bottom level is the original flat network of GNs [2].
Each GN is a model for a set of generic sensory values
(e.g., the value of a pixel or a real value of sensory data).
When seen as a network, graph neurons can be modeled
by an array where columns are individual GNs and rows
are possible symbols, which a neuron can recognize, e.g. an
integer between 0 and 100. For example, if there are only two
possible symbols, say X and Y in the alphabet of a pattern,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KLEYKO et al.: BIOINSPIRED ARCHITECTURE FOR PATTERN PROCESSING 3

Fig. 1. HGNs of a five-element pattern of two symbols. Short arrows: how
GNs communicate indices of the activated GN elements with their neighbors,
creating logical connectivity. Null GN numbers are assigned at the start and
at the end of the array to maintain a consistent reporting scheme, where every
activated GN reports to both the adjacent GNs.

then only two rows are needed to represent those symbols.
The number of columns3 in the GN array determines the size
of patterns which it can analyze.

An input pattern is defined as a stimulus produced within
the network. In Fig. 1, each GN can analyze a symbol
(X or Y) of a pattern consisting of five elements. In each GN
(column), only the element with the matching value (a row ID)
would respond. For example, if the pattern is YXYYX, then
in the second column, the X element will be activated in
response to this input stimulus. If a particular element in the
GN column is activated, it sends a report to all adjacent GNs.
The report contains the activated GN’s element ID (the row
index). Otherwise, it simply ignores the stimulus and returns
to the idle state.

During the next phase, all GNs communicate the indices
of the activated elements with the adjacent columns at their
level, and in addition, communicate the stored bias information
to the layer above. The procedure continues in an ascending
manner until the collective bias information reaches the top of
the hierarchy. The higher level GNs can thus provide a more
authoritative assessment of the input pattern. The accuracy of
HGN has been demonstrated to be comparable to the accuracy
of neural network with back-propagation [2].

B. Example of HGN Operation

In order to give a better understanding of the encoding pro-
cedure of the original HGN, consider the task of memorizing
primitive pixel patterns, as shown in Fig. 2. The patterns are
6×6 black and white pixel images. Suppose that the pixels are
numbered from 1 to 36 starting from the upper left corner. To
facilitate the presentation, each pattern is given the name of a
still life figure in the Game of Life [28]. That is, the patterns
in Fig. 2 show the ship, the aircraft carrier, and the beehive.
The patterns will be subsequently presented to the HGN in the
order ship, carrier, and beehive.

The bottom layer of the HGN consists of an array of 36 GNs
(GN1, GN2, . . . , GN36), where each GNi (i = 1, . . . , 36) is

3In this paper, the words column and GN are used interchangeably and refer
to a single GN. The term GN array refers to several GNs used to recognize
a pattern of several elements, where one neuron is used to recognize one
element of the pattern.

Fig. 2. Three examples of pixel images for HGN memorization. These
patterns are named after still life patterns in the Game of Life [28]. The
highlighted cells have ordered indices 27, 28, and 29 and are referred to in
the text. (a) Ship still life. (b) Aircraft carrier still life. (c) Beehive still life.

dedicated to recognizing the state (ON/OFF) of the corre-
sponding pixel. The subscript i corresponds to the number
of the pixel to which this GN is assigned. GNi is a column
with two elements GNi [0] = white and GNi [1] = black.
In what follows, the operation of the three GNs highlighted
by the red rectangle in Fig. 2 is considered, i.e., GN27, GN28,
and GN29.

The first presented pattern (ship) results in activations
GN27[0], GN28[1], and GN29[1], i.e., white–black–black. The
activated indices will be communicated by each GN to their
immediate neighbors. Each GN then notes down which neigh-
bors were activated in a table of information called the bias
array. The bias array essentially links a certain activation of
neighbors to an integer index of the record. In this example, the
middle black element (GN28[1]) will associate the activation
of its white neighbor on its left and its black neighbor on its
right with an index of 0, for example. It will then communicate
this index to the element directly above it in the hierarchy
of layers (as shown in Fig. 1). This (upper) element will in
turn broadcast its activation to its neighbors, receive similar
messages, and create a new entry in its own bias array. This
process will continue until it reaches the uppermost layer in the
GN hierarchy, consisting of a single column of two elements.

Now, consider the aircraft carrier and beehive images; as the
highlighted pixels in the aircraft carrier [Fig. 2(b)] are the same
in the two images, when the three elements broadcast their
activation and consult their bias arrays, they will find that they
encountered the same activation before and hence will emit
the same index to the higher layer. However, in the beehive
image [Fig. 2(c)], the activation will now be black–black–
white instead of white–black–black. This means that GN27[1]
and GN29[0] will be activated for the first time. They will
form entries in their (empty) bias arrays in a similar fashion
as before and transmit the index (0) to the assigned node of the
upper hierarchical level. Meanwhile, the black element in the
middle (GN28[1]) will activate as before, but as its activated
neighbors are different, it will form a new entry in its bias
array with an index of 1, and transmit this information to the
next upper layer. In this way, the differences and similarities
between patterns are stored in a distributed manner throughout
the hierarchy of GNs.

C. Motivation for Holographic Graph Neuron

An important issue in hierarchical models is the resource
requirement overhead, in particular, with regard to the number

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3. High-level illustration of the proposed solution. Representation of
the HGN using VSA. R: red. G: green. B: blue. M: magenta. Y: yellow.

of processing elements required. For example, if the HGN for
recognition of patterns of five elements (as shown in Fig. 1)
is to be implemented in a wireless sensor network, where
a sensor node is a single GN, then nine sensor nodes are
required, but only five are actually used to observe patterns
(bottom layer). This paper proposes a holographic approach,
which borrows the abstraction of the GN and enables a flat GN
array to operate with higher level of accuracy and comparable
recall time to that of HGN, without the need for a complex
topology and additional nodes. The high-level logic of the
proposed solution is shown in Fig. 3, which illustrates the
concept underlying both the approaches. On the left, HGN
creates the representation of a pattern through communication
indices of the activated GN elements between neighbors. Thus,
on the highest level, HGN forms a representation of the whole
pattern (illustrated with mixed colors in Fig. 3). In contrast,
on the right, HoloGN achieves a similar result by encoding
each GN element and the combination of their particular
activations into a distributed representation. The fundamentals
of the algebra of distributed representations are presented
in Section IV-D.

D. Fundamentals of Vector Symbolic Architecture
and Binary Spatter Codes

As mentioned previously, VSA is an approach for encoding
and operating on distributed representation of information,
and has previously been used mainly in the area of cognitive
computing for representing and reasoning upon semantically
bound information [4], [29].

The fundamental difference between the distributed and
localist representations of data is as follows: in traditional
(localist) computing architectures, each bit and its position
within a structure of bits are significant (for example, a
field in a database has a predefined offset amongst other
fields, and a symbolic value has a unique representation in
ASCII codes), whereas in a distributed representation, all
entities are represented by vectors of very high dimensions.
For the remainder of this paper, the term HD vector is used
when referring to such codes. In particular, the binary spatter
code variety of HD vectors is utilized. High dimensional-
ity refers to the fact that in HD vectors, several thousand
positions (of binary numbers) are used for representing a
single entity; Kanerva [4] proposes the use of vectors of
10 000 binary elements. Such entities have the following useful
properties.

1) Randomness: Randomness means that the values at each
position of an HD vector are independent of each other,
and 0 and 1 components are equally probable. In very high

dimensions, the distances from any arbitrary chosen HD vector
to more than 99.99% of all other vectors in the representation
space are concentrated around 0.5 normalized Hamming dis-
tance. Interested readers are referred to [4] and [12] for a
comprehensive analysis of the probabilistic properties of the
hyperdimensional representation space.

Denote the density of a randomly generated HD vector
(i.e., the number of 1s in an HD vector) as k. The probability
of selecting a random vector of length d with density k, where
the probability of 1s appearance equals p, is described by the
binomial distribution

Pr(k, d, p) =
(

d

k

)
pk(1 − p)d−k . (1)

When d is in the range of several thousand binary elements, the
calculation of the binomial coefficient requires sophisticated
computations. Therefore, approximations of binomial distrib-
ution are used for large values of d . It can be well approxi-
mated via the normal approximation, the de Moivre–Laplace
theorem, or the Poisson distribution (for sparse vectors). The
calculations in this paper use the de Moivre–Laplace theorem.

2) Similarity Metric: The similarity between two binary
representation is characterized by normalized4 Hamming
distance

�H (A, B) = 1

d
‖A ⊗ B‖1 = 1

d

d−1∑
i=0

ai ⊗ bi (2)

which (for two vectors) measures the number of positions in
which they differ. Here, ai and bi are bits on positions i in
vectors A and B of dimension d , and ⊗ denotes the bitwise
XOR operation.

3) Generation of HD Vectors: Several random binary
vectors with the above-mentioned properties can be generated
from one such vector via the cyclic shift operation. Using
this operation, a sequence of K vectors, which are pseudo-
orthogonal to a given initial random HD vector A (i.e., the
normalized Hamming distance between them equals approxi-
mately 0.5), is obtained by cyclically shifting A by i positions,
where 1 ≤ i ≤ K < d . Later in this paper, this operation
is denoted as Sh(A, i). The cyclic shift operation has the
following properties.

1) It is invertible, i.e., if B = Sh(A, i), then
A = Sh(B,−i).

2) It is associative in the sense that Sh(B, i + j) =
Sh(Sh(B, i), j) = Sh(Sh(B, j), i).

3) It preserves the Hamming weight of the result: ‖B‖1 =
‖Sh(B, i)‖1.

4) The result is dissimilar to the vector being shifted:
(1/d)‖B ⊗ Sh(B, i)‖1 ≈ 0.5.

Note that the cyclic shift is a special case of the permutation
operation [4]. In the context of VSA, permutations were
previously used to encode sequences of semantically bound
elements.

4) Bundling of Vectors: Joining several entities into one
structure is done with the bundling operation; it is imple-
mented by a thresholded sum of the HD vectors representing

4That is, normalized to the dimension of the HD vectors.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KLEYKO et al.: BIOINSPIRED ARCHITECTURE FOR PATTERN PROCESSING 5

the entities. A bitwise thresholded sum of n vectors results
in 0 when n/2 or more arguments are 0, and 1 otherwise. In the
case of an even number in sum, ties are broken at random,
which is equivalent to adding an extra random HD vector [4].
Furthermore, the terms thresholded sum and majority sum are
used interchangeably and denoted as [A+B+C]. The relevant
properties of the majority sum are in the following.

1) For any number of operands, the result is a vector, with
the number of 1 components being approximately equal
to the number of 0 components.

2) The result is similar to all vectors included in the sum.
3) The more HD vectors that are involved in a majority

operation, the closer the normalized Hamming distance
between the resultant vector and any HD vector compo-
nent is to 0.5.

4) If several copies of any vector are included in a majority
sum, the resultant vector is closer to the dominating
vector than to other components.

The algebra on VSA includes other operations, e.g., binding
and permutation [4]. Since they are not used in this paper,
their definitions and properties are omitted.

V. HOLOGRAPHIC GRAPH NEURON

This section presents one of the main contributions of this
paper: the adoption of the VSA data representation for the
implementation of the HGN approach.

The commented MATLAB code for the implementation of
HoloGN and simulation scenarios used in this paper to produce
Figs. 8–12 are available online.5

A. Encoding

In the case of HoloGN, all its elements, i.e., symbols of
individual neurons (e.g., possible values of image pixels),
are indexed uniquely, and the index of a particular element
is derived as a function of the GN’s ID. Let IV j be an
initialization HD vector for GN j . The initialized vectors for
different GNs are chosen to be mutually orthogonal. Then,
the HD index of element i in GN j is computed as EHD

(j,i) =
Sh(IV j , i), where Sh() is a cyclic shift operation resulting in
the generation of a vector orthogonal to IV j HD vector [30].6

B. Construction of VSA Representation of Activated GNs

Let n be the number of individual GNs. When a GN array
(n GNs) observes a pattern, the activated elements commu-
nicate their HD-represented indices to all other GNs; the
holographic representation of the activated elements is then

HGN =
⎡
⎣ n∑

j=1

(
EHD

j

)⎤⎦ (3)

5A git user can obtain the source code using the command git
clone https://github.com/eaoltu/hologn.git. Readers who are not familiar
with the git version management system can download the code
directly from https://sites.google.com/site/evgenyosipov/
professional/research-projects/hologn. The Readme.txt file
included in the bundle contains details on how to work with the code. To save
space, the code snippets are not included in this paper. Instead, the readers
are assisted with references to particular functions in the implementation.

6In the implementation, the encoding is done in the hologn_encoder
function.

where EHD
j is the HD index of the activated element in

GN j , and the addition operation is the bundling operation, or
thresholded sum, as described in Section IV-D.7 As discussed
previously, in the resultant HD vector, the normalized Ham-
ming distances between each component and the composition
vector are strictly less than 0.5. This property will be utilized
later when constructing data structures for recall of patterns
in HoloGN.

C. Data Structures for Storing and Retrieving Holographic
Representations in HGN Elements

HoloGN will store the holographic representation of the
entire pattern (3) observed across all GNs. A possible archi-
tecture is for all memorized patterns to be collected and stored
centrally at a processing node, where the role of processing
node can be assigned to one of GNs or to some other external
device.

Depending on the particular application of HoloGN, the
memorized patterns could be stored either in an unsorted list
or in bundles. The first mode of storing HoloGN patterns
corresponds to the case, where the structure of the observed
patterns is unknown; the latter mode is used in the case of
supervised learning. Section VI describes different HoloGN
usages and recall strategies.

VI. HoloGN RECALL STRATEGIES

This section introduces and evaluates the performance of
two major recall modes: the one-shot case and the case of
supervised learning.

A. Time-Efficient ξ -Accurate Recall in an
Unsorted HoloGN Storage

The common step in both recall modes is the procedure for
the time-efficient search over an (unsorted) list of HoloGN
records. Recall that all manipulations with VSA-encoded enti-
ties are done using simple bitwise arithmetic operations and
calculations to obtain the Hamming distance between entities.
However, it is assumed for this paper that there is no particular
optimized implementation of VSA’s bitwise operations; this
is because such operations are tailored to the architectures
of specific microprocessors, which operate with words of
substantially lower dimensionalities (typically 32 or 64 bits).
Therefore, the adoption of these methods for implementing
the bitwise operations on words of thousands of bits would
be cumbersome. Instead, an easily analyzable computational
model is adopted in this paper, which could also be adapted
to implementation in specialized computing architectures.

In what follows, each HoloGN pattern hi is modeled as a
row vector of d elements. The list of stored HoloGN patterns
is, therefore, modeled as an l × d matrix, where l is the
number of the learned (stored) HoloGN patterns. Denote this
matrix as H. The task of recalling a pattern with a target
recall threshold of ξ (ξ < 0.5) is formulated as finding the
rows hi in H with normalized Hamming distances to the query
pattern hq less than or equal to ξ .

7In the HoloGN code, the majority sum is implemented in the majority_sum
function. This function is then used to construct the HGN as in (3).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Comparison of different approaches to recalling patterns, showing the
time taken to calculate the Hamming distance against the number of previously
presented patterns.

The conventional way of computing the normalized
Hamming distance between vectors would be to perform the
following sequence of computations for each row in H.

1) Perform an elementwise XOR with the vector query.
2) Sum up all elements in the intermediate result.
3) Divide the result by the dimensionality of the vectors.
Although there is no fundamental significance in the way

the Hamming distance is calculated in a specific computing
environment, in practice, it is important to have efficient imple-
mentation. Therefore, the performance of two implementations
of this method using MATLAB’s repmat and bsxfun
functions is shown by the top two curves in Fig. 4; bsxfun
applies an element-by-element binary operation to two arrays
with singleton expansion enabled. The curves demonstrate a
linear but rapid increase in the recall time with the increase in
the number of the stored patterns. The lowest curve in Fig. 4
shows the performance of matrix-vector multiplication of the
same size, which is chosen as the reference case. The results
were obtained on an Intel Core i7-3520M 2.9 GHz machine
with Windows 7 operating system using one processor.

1) Binary Spatter Codes as Complex Numbers: In order
to improve the efficiency of calculating Hamming distances
over a vast number of HoloGN patterns, it is proposed to
represent HoloGN patterns using complex numbers, where a
binary 0 would be represented by

√−1 (i.e., the imaginary
number); and a binary 1 would remain 1. The idea behind
this transformation is simple: the multiplication of bits in the
same position should produce three outcomes: −1 = j × j ,
1 = 1 × 1, and j = 1 × j . That is, the multiplication of two
similar bits produces a real number, and the multiplication
of two different bits produces an imaginary number. In this
way, the sum of the imaginary parts over all positions in the
resulting vector, divided by dimensionality d , will correspond
to the normalized Hamming distance between the two vectors.
Thus, the suggested method allows us to implement the
calculation of Hamming distance using the standard method

Fig. 5. List of letter images for comparison.

of matrix-vector multiplication, as shown in the following:

H × hq =

⎛
⎜⎜⎜⎝

√−1 1 · · · √−1
1 1 · · · √−1
...

...
. . .

...√−1
√−1 · · · 1

⎞
⎟⎟⎟⎠ ×

⎛
⎜⎜⎜⎝

√−1
1
...√−1

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

254 + 1633 j
617 + 3824 j

...
548 + 4952 j

⎞
⎟⎟⎟⎠. (4)

The performance of the proposed method is shown in Fig. 4
(dashed curve). It demonstrates that the calculation of the
Hamming distance is only two times slower than the
usual matrix-vector multiplication. In particular, to calculate
the Hamming distance from the target vector to each of
20 000 stored patterns, it takes approximately 200 ms on the
test machine. Further optimization of the matrix multiplication
and execution on parallel architectures indicate the realistic
bounds on the recall time over extremely large numbers of
patterns.8

B. Case Study 1: Best Match Probing Under
One-Shot Learning

1) Example (Encoding and Recall of Letters Using
HoloGN): Consider the 5 × 7 black and white pixel images
of Latin letters, as shown in Fig. 5. The encoding process is
exemplified in Fig. 6 and includes the following steps.

1) Initialization of HoloGN is as follows.
a) Set the dimensionality of the HD vectors.9 In this

paper, 10 000 bits are used for the simulations.
b) Set the number of GNs.10 The image of a letter

consists of 35 pixels. Every pixel is assigned one
GN, i.e., 35 GNs are initialized in the simulations.

c) Generate the initialization of HD vector I V for
each GN.11

2) Present a letter image to the initialized HoloGN.12

Images for all 26 letters are stored in Letters.mat.
3) For each GN (pixel), shift cyclicly this GN’s I V to the

value of the pixel (1 for white and 0 for black).13

8In the HoloGN implementation, the transformation of the array of binary
values into the array of complex values is done by the bin2com function.

9Line 28 in the hologn_encoder function.
10Line 31 in the hologn_encoder function.
11Line 36 in the hologn_encoder function.
12Line 45 in the letters_encoding function.
13Lines 43–45 in the letters_encoding function.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KLEYKO et al.: BIOINSPIRED ARCHITECTURE FOR PATTERN PROCESSING 7

Fig. 6. Example of HoloGN encoding for letter A. For simplicity of
presentation, the encoding operation is exemplified on 10-D vectors. In the
simulations, HD vectors with 10 000 elements were used.

4) Form the distributed representation of the letter
(see Section V-B) using shifted I V vectors.14

5) Store the letter’s representation in the list of memorized
patterns.15

The encoding process is repeated for all 26 letters. Thus,
at the end of the letter encoding procedure, 26 HD vec-
tors are created, which are stored in the list of memorized
patterns.

The recall phase for a randomly distorted letter is done as
follows.

1) The pixels of the chosen letter are randomly distorted
according to the specified distortion level.16

2) The distributed representation of the distorted pattern is
formed as described earlier using the letters_encoding
function.

3) The processing unit calculates Hamming distances from
the representation of the distorted letter to all of the
26 representations stored in the list of memorized
patterns.17

4) The stored pattern with the minimal Hamming distance
to the distorted one is recalled by the HoloGN as the
desired letter.18

Note that the whole simulation scenario for case study 1 is
available in the file Scenario_recall_pattens_with_distortions.

The first usage of HoloGN probes the existence of the target
query pattern amongst the previously memorized patterns.
The perfect match in this case would be indicated by a
normalized Hamming distance of zero. The deviation from
zero, therefore, reflects the degree of proximity of the query
to one or several stored HoloGN patterns.19 In the following
example, the accuracy of the HoloGN recall is compared with
the performance of the original HGN approach. For the sake of
fair comparison, the 7 × 5 pixel letters of the Roman alphabet
(as in [2]) are used.

In the memorization phase, a set of noise-free images of
letters shown in Fig. 5 was presented to both architectures.

14Line 48 in the letters_encoding function.
15Line 45 in the letters_encoding function.
16Line 66 in the Scenario_recall_pattens_with_distortions scenario.
17Line 28 in the item_memory_c function.
18Line 31 in the item_memory_c function.
19The recall of the closest memorized pattern for a given representation of

the target query is implemented in the item_memory_c. function.

Fig. 7. Example of images distorted by 5 bits (14.3%) presented for recall.

In the recall phase, the images of the same letters distorted
with different levels of random distortions (between 1 bit
corresponding to a distortion of 2.9% of the pattern’s size
and 5 bits equivalent to 14.3% distortion) were presented to
the architectures for the recall. An example of a noisy input is
shown in Fig. 7. In the case of HoloGN, the pattern with
the lowest normalized Hamming distance to the presented
distorted pattern was returned as the output.

Fig. 8 shows the results of the accuracy comparison between
the recall results for the HoloGN approach and the reference
HGN architecture. To obtain the results, 1000 distorted images
of each letter for every level of distortion were presented
for recall. The charts show the percentage of the correct
recall output. The analysis shows that the performance of
the HoloGN-based AM at least matches that of the original
approach. However, in certain characters, the recall is inferior
to other letters. For example, the accuracy of character O
recognition is persistently lower than other letters. This is
due to its similarity to several other characters. In particular,
when recalling O distorted by 5-bits HoloGN recall scoring
is C—5.2%, D—11.4%, G—11.9%, and Q—5.1%. In the
simulations, the average accuracy of HoloGN when recalling
patterns is 51.7% higher than the accuracy of HGN.

Note that in the performance comparison, the average recall
accuracy of HoloGN is equivalent to the average recall accu-
racy in the original low-dimensional space when an image is
represented as 35-bit binary vector (0 corresponding to black
and 1 corresponding to white) and the Hamming distance is
used to measure the similarity between the images. The advan-
tage of using HD vectors can be observed when distortions
occur in the representational space of each approach, i.e., bit
distortions to the original low-dimensional pattern (see Fig. 7)
and the proportional distortion to the HD pattern formed by
HoloGN. For example, with a 1-bit distortion, 2.9% of the
original bit pattern is changed, and hence, 290 bits in the
10 000-bit HD vector would be changed to obtain the equiva-
lent distortion. The results of the average accuracy of the recall
for this experiment are shown in Fig. 9. Due to the properties
of the distributed nature of HoloGN’s representations, it shows
superior robustness to distortions, while the recall accuracy in
the low-dimensional representation significantly drops with the
increased level of distortion.

2) Encoding and Recall of Nonbinary Patterns: We exten-
ded our example into nonbinary patterns by changing the
white background of the images into a third color (gray).
In both HoloGN and using the low-dimensional representa-
tions, the original black and white images shown in Fig. 5
are memorized. To represent the images for recollection in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 8. Results from testing black and white images of letters using recall patterns with distortions ranging from 1 (2.9%) to 5 bits (14.3%).

Fig. 9. Average accuracy of the recall for HoloGN and for the original
low-dimensional (binary) representation against distortion level when distor-
tions occur in the representational space of each approach, i.e., bit distortions
to the original low-dimensional patterns and the proportional distortion to the
HD representations of the patterns.

the low-dimensional space, each pixel is now represented
by two bits, where 00 corresponds to black color, 10 to
white color, and 01 to the new gray color; hence, the overall
representation of a single image now requires 70 bits. For the
HD representation in HoloGN, we encode the new color by
shifting the initialization HD vector by two, as compared to
no shift for black and one shift for white (see Fig. 6). This
process is explained in Section VI-B.

The average accuracy for both approaches when queried
with the nonbinary patterns is shown in Fig. 10. Initially,
Hamming distance is used to measure similarity for both
approaches, as shown in Fig. 10(a). The accuracy of HoloGN
in this experiment is 85.5%. This is caused by the fact that
some letters are subsets of others. For example, since the
black pixels in the letter T are contained within the letter I,

when recalling the letter T with the changed background,
the similarity to the representation of the original letter is
determined only by the black pixels in the same position as in
the query. As both the original T and I have the same number
of black pixels in common, the Hamming distances of their HD
vectors to the HD vector of the query will be approximately
the same, and hence, HoloGN will recall either T or I with
roughly the same probability. Note that if the images of letters
were constructed, such that none of the letters were a subset
of another, the recall accuracy of HoloGN would be 100%.

The recall accuracy with the low-dimensional representa-
tions is very poor (3.9%). In fact, in this experiment, only the
letter B was recalled correctly. The reason for this is that the
letter B contains the least amount of white background, and
hence, it is the most similar to all of the nonbinary patterns
presented. Thus, with only one correct recall, the accuracy
is 1/26.

We also compared the two approaches when using Euclid-
ean distance to measure similarity for the low-dimensional
representation. As shown in Fig. 10(b), the value of the
background color varies between 1 (i.e., white, so the altered
images are exactly the same as in Fig. 5) and 0 (i.e., black,
so the image is completely black). The Euclidean distance
is calculated by the squared root of the sum of the squared
differences between pixels. Note that similarity for HoloGN is
calculated as previously, but white is represented by a cyclic
shift of 255, black by 0, and the background color varies
between 0 and 255. While the value of the new color is above
0.5 (i.e., more similar to white), the recall accuracy for the
original representation is without error; however, it diminishes
substantially as the value of the new color decreases to
zero and the background becomes more similar to black.
In contrast, due to the properties of the cyclic shift operation,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KLEYKO et al.: BIOINSPIRED ARCHITECTURE FOR PATTERN PROCESSING 9

Fig. 10. Average accuracy of the recall for HoloGN and for the original low-dimensional representation in a nonbinary case using a third color for the
background in the test images. (a) Accuracy of HoloGN and the low-dimensional representation when Hamming distance is used as a metric for both.
(b) Accuracy when Euclidean distance is used as a metric for the original representation (note that Hamming distance is still used for HoloGN). The value
of the new color used in the Euclidean distance calculation was changed from 1 (white) to 0 (black), while in the HD vector, a cyclic shift from 255 (white)
to 0 (black) was used.

HoloGN treats any shift (that is not zero or 255) representing
the new color as completely dissimilar to both white and
black, and hence HoloGN’s performance is constant and
the same as in the previous experiment. The comparison of
the results in Fig. 10(b) for the two approaches shows that
HoloGN’s representations outperformed the low-dimensional
representations approximately 50% of the time.

These results highlight the importance of similarity encod-
ing by HoloGN and suggest that the effectiveness of encoding
values by the cyclic shift operation depends on the specific
application. For example, it is reasonable to encode symbols
of letters as completely dissimilar HD vectors (see [30]), as
their meanings are orthogonal; on the other hand, the encoding
of continuous values would more likely require similar values
with similar representations in HD spaces. Hence, future
work on HoloGN will investigate new ways of representing
similarity when mapping values of GN to HD vectors, using
the approaches outlined in [31]–[34].

C. Case Study 2: HoloGN Recall Under Supervised Learning

The above-mentioned analysis is a very positive result for
the proposed bioinspired AM-based pattern-processing archi-
tecture, since the accuracy of the original HGN approach was
demonstrated to be as accurate as artificial neural networks
with back-propagation [2]. While establishing formal relation-
ships to the framework of artificial neural networks is outside
the scope of this paper, this section presents the results of the
pattern recognition accuracy of the HoloGN architecture under
supervised learning.20 In this case, the HoloGN is presented
with a series of randomly distorted patterns for each letter
with different levels of distortion (between 1 and 15 bits), as
exemplified in Fig. 7. In the experiments, up to 500 patterns
for each letter and every level of distortion were presented
for memorization. For the particular level of distortion i , all y
presented patterns of the particular letter Li were bundled to
a single HoloGN representation as

h(L) =
[y∑

i=1

(HGN(Li))

]
. (5)

20By supervised learning, we mean labeling distorted patterns by bundling
them with the distributed representation of the correct character during the
training phase.

Fig. 11. Average accuracy of HoloGN recall under supervised learning
memorization as a function of the distortion level.

Thus, by the end of the learning phase, the HoloGN list
will contain 26 HD bundles, each jointly representing all
(presented) distorted variants of the particular letter. In the
recall phase, for each distortion level, HoloGN was presented
with 500 new distorted patterns of each letter. The accuracy
of the recall was measured as the percentage of the correctly
recognized letters averaged over the alphabet.

Fig. 11 shows the obtained results: 90% accurate recall
was observed when learning symbols distorted by up to
5 bits (14.3%). While the accuracy predictably decreases
rapidly with the increase of distortion in the patterns presented,
a reasonable 80% recall accuracy was observed for learning
sets with 7-bit distortion (20%).

Fig. 12 shows the convergence of the HoloGN recall accu-
racy with the number of noisy samples presented for the case
of 5-bit distortion (14.3%). For larger learning sets, the average
accuracy in Fig. 12 is approaching the average value in Fig. 11
for 5-bit distortion. This is a positive result for the presented
architecture, which illustrates the suitability of the HoloGN in
applications requiring supervised learning.

VII. PATTERN DECODING AND

SUBPATTERN-BASED ANALYSIS

There is a class of pattern recognition applications, which
requires an understanding of the details of the recall results.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 12. Accuracy of HoloGN under supervised learning memorization as a
function of the number of examples presented for a given level of distortion.

For example, when a recall returns several possible patterns
of given recall accuracy, the task would be to understand the
overlapping elements. This section considers two aspects of
this task: a robust decoding of elementary components out of a
distributed VSA representation and a quantitative metric of the
similarity via direct comparison of distributed representations,
without the need for decoding those representations.

The VSA approach of representing data structures by defi-
nition makes decoding of the individual components a tedious
task, requiring a brute force test on the inclusion of all possible
HD codewords for each GN. The majority sum—which is
used for creating HoloGN representations of the observed
patterns—imposes a limit on the number of HD codeword
operands, above which a robust decoding of the individual
operands is impossible.

A. Preliminaries

Denote the density of a randomly generated HD vector
(i.e., the number of 1s in an HD vector) as k. The probability
of picking a random vector of length d with density k, where
the probability of 1s appearance, defined as p, is described
by (1). The mean density of a random vector is equal to d · p.
Note that in reality, the density of randomly generated HD
vectors will obviously deviate from the mean value. However,
according to (1), the density k approaches the mean value
with the increase of dimensionality d . In other words, the
probability of generating HD vector with k � d · p or k � d · p
decreases with the increase of dimensionality d .

Define thr as the threshold probability of generating a vector
with a certain deviation of density being negligibly small. Let
k− and k+ characterize the lower and the upper bounds of
the interval of possible densities. This is shown in Fig. 13.
The bounds for a given d , p, and thr (1) are calculated
according to

k−(d, p, thr) = max
k

(Pr(k, d, p) ≤ thr|k < (d · p)) (6)

and

k+(d, p, thr) = min
k

(Pr(k, d, p) ≤ thr|k > (d · p)). (7)

The value of thr is chosen to be small (10−6).

Fig. 13. Binomial distribution and its parameters describing HD vectors.

Fig. 14. Explanation of vector capacity. Solid line: random HD vector.
Dashed line: noise introduced by majority sum.

B. Capacity of HoloGN Representations

Suppose there exists an item memory [4] containing
HD vectors representing atomic concepts.21 Recall that when
several HD vectors are bundled by the majority sum the noise
of flipped bits increases with the number of components. For
a given dimensionality d , there is a limit on the number of
bundled HD vectors, beyond which the resulting HD vector
becomes orthogonal to every component vector; hence, the
capacity of the resulting vector is defined as the maximal
number of mutually orthogonal HD vectors, which can be
robustly decoded from their majority sum composition by
probing the item memory. Note, however, that component
vectors in fact never become truly orthogonal to the resulting
HD vector, although the component vectors can no longer be
reliably extracted from the resulting HD vector.

In order to characterize the capacity of the composition
vector for a given dimensionality, one needs to characterize
the level of noise pn introduced by the bundling operation.
This is calculated as in [16] by

pn(n) = 1

2n

[
1

2
−

(
n − 1

1

2
(n − 1)

)]
(8)

where n is the number of atomic vectors in the resulting
majority sum vector.

Consider an arbitrary HD vector A to be decoded from a
majority sum composition. Let N be a vector of noise imposed
by the majority sum operation. Since the components are
mutually orthogonal, the density of 1s in the noise vector
is also described by the binomial distribution Pr(k, d, pn).
As each new vector is added, the level of noise increases, and
hence, the mean of the noise vector density will approach 0.5,
as shown in Fig. 14. Due to the properties of HD space, vector

21In the case of HoloGN, an atomic concept is the code for the particular
HoloGN element.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KLEYKO et al.: BIOINSPIRED ARCHITECTURE FOR PATTERN PROCESSING 11

Fig. 15. Capacity of the component vector versus the dimensionality. The
calculations use the threshold of thr = 10−6.

A will be undecodable when the upper bound k+(d, pn, thr)
of the density of noise vector N approaches the lower bound
k−(d, 0.5, thr). That is, the noisy version of A becomes
orthogonal to its clean version. This logic is shown in Fig. 14,
where the resulting majority sum vector is orthogonal to
all components. Therefore, the capacity of the distributed
representation with dimensionality d is computed by

Capacity(d, thr) = max
n

(k+(d, pn(n), thr)≤ k−(d, 0.5, thr)).

(9)

Fig. 15 shows the capacity of HD vector of different dimen-
sionalities calculated for threshold probability thr = 10−6.
In particular, for d = 10 000 bits, the capacity of the robustly
decodable VSA is 89 vectors. A similar analysis of capacity of
HD vectors consisting of 1 and −1 components was presented
in [7]. The main difference between the two methods is that the
calculations in (9) require the thr parameter, while the analysis
in [7] requires the size of the item memory and the probability
of successful decoding. Nevertheless, the two approaches for
capacity estimation largely agree. For example, in [7], for
the dimensionality of 90 000, the capacity is 1000, and the
same capacity for (9) is achieved with the dimensionality
of 100 000.

C. Calculation of the Number of Common Component
Vectors in Two Resulting Vectors

Given the rather conservative limits on the number of
robustly decodable elements in a distributed representation, it
is important that the proposed HoloGN architecture can esti-
mate the similarity between different patterns without decod-
ing them. This section provides a method for quantitatively
measuring the number of overlapping elements as a function
of their relative normalized Hamming distance. Denote m and
n (m ≤ n) as lengths of two patterns, and denote c as the
number of common elements in these patterns. Let M be a
c × d matrix of common elements, where each row contains
a random HD vector of dimension d encoding element ci .
Denote an arbitrary column of matrix M as C. Since rows
in M are independent, the density of 1s in each column also
follows the binomial distribution with p = 0.5 and length c.
Denote the number of 1s in column C as ‖C‖1.

In order to calculate the normalized Hamming distance
between the distributed representations of two patterns with
known m, n, and c, consider all possible cases when bits in the
same position are different. The normalized Hamming distance
between two patterns can be estimated as

p(c, m, n) =
c∑

‖C‖1=0

(c
‖C‖1

)
2c

(p1(m, c, ‖C‖1)p0(n, c, ‖C‖1)

+ p0(m, c, ‖C‖1)p1(n, c, ‖C‖1)) (10)

where pi(j, c, ‖C‖1) stands for the probability of having i
(0 or 1), when the representation consists of j = m or j = n,
atomic vectors and c of these vectors are overlapped.

Due to the symmetry in the calculation of probabil-
ities, pi(j, c, ‖C‖1) is presented only for p1(m, c, ‖C‖1)
case. There are three possibilities for the calculation of
p1(m, c, ‖C‖1).

1) If ‖C‖1 is greater than m/2, then the result of the
majority sum is 1, i.e., p1 is equal to 1.

2) If the number of possible 1s is smaller than m/2, then
the probability of p1 is equal to 0.

3) Otherwise, the probability should consider all possible
combinations and their probabilities.

Therefore, p1(m, c, ‖C‖1) can be calculated as follows:

p1(m, c, ‖C‖1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 when ‖C‖1 >
m

2
0 when (m − c) < s∑(m−c)

i=s

(m−c
i

)
2(m−c)

otherwise.

(11)

Here, s = (m + 1/2) − ‖C‖1. Similarly, for p0(m, c, ‖C‖1),
we have

p0(m, c, ‖C‖1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 when (c − ‖C‖1) >
m

2
0 when (m − c) < l∑(m−c)

i=l

(m−c
i

)
2(m−c)

otherwise

(12)

and l = (m + 1/2) − (c − ‖C‖1).
Fig. 16 shows the normalized Hamming distances between

two resulting vectors for different numbers of overlapping
vectors. The results show that the larger the number of com-
mon elements, the smaller the normalized Hamming distance
between resulting vectors.

This method opens a way for the construction and analysis
of patterns far beyond VSA’s robustly decodable capacity.
The problem with practical application of this method, how-
ever, comes with the rapid convergence of the normalized
Hamming distance indicator to 0.5, making the differ-
ence between analyzable patterns indistinguishable, as shown
in Fig. 16. For example, for HoloGN representations of
patterns with 15 elements, subpatterns of three overlapped
elements are robustly detected, while patterns with fewer
overlapped elements are indistinguishable. Thus, the minimal
number of overlapped elements in two patterns, which can

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 16. Normalized Hamming distance between two resulting vectors against
number of components in common. The number of atomic vectors is the same,
m = n.

Fig. 17. Minimal number of common components, which is sensible between
two patterns of the same size against the size of patterns, d = 10 000 and
thr = 10−6.

be robustly detected using the normalized Hamming distance
indicator, is called the bundle’s sensitivity.

The analysis of the sensitivity is similar to the analysis
of the capacity of VSA representation in Section VII-B. For
two patterns of length m and n elements, and c overlapped
components, the sensitivity is calculated by

Sensitivity(d, thr, m, n)

= min
c

(k+(d, p(c, n, m), thr) ≤ k−(d, 0.5, thr)). (13)

Fig. 17 shows the development of the sensitivity thresh-
old with the number of elements in the compared patterns.
The results show that the number of components for robust
detection grows linearly with the size of the pattern. Patterns
with more than 500 elements should contain at least 14%
overlapped elements to be robustly detected by the proposed
method.

VIII. CONCLUSION

This paper has presented HoloGN—a novel approach for
memorizing patterns of generic sensor stimuli. HoloGN is built
upon the previous GN algorithm and adopts a vector symbolic

representation for encoding GN’s states. The adoption of the
vector symbolic representation ensures a single-layer design
for the approach, which leads to much simpler computational
operations. The approach presented in this paper possesses
a number of unique properties. First, it enables a linear
(with respect to the number of stored entries) time search
for an arbitrary subpattern. Second, while maintaining the
previously reported properties of the HGN, HoloGN improves
the noise resistance of the architecture, leading to substantial
improvement of pattern recall accuracy.

REFERENCES

[1] E. Osipov, A. I. Khan, and A. Amin, “Holographic graph neuron,” in
Proc. Int. Conf. Comput. Inf. Sci. (ICCOINS), 2014, pp. 1–6.

[2] B. B. Nasution and A. I. Khan, “A hierarchical graph neuron scheme
for real-time pattern recognition,” IEEE Trans. Neural Netw., vol. 19,
no. 2, pp. 212–229, Feb. 2008.

[3] A. I. Khan and A. H. M. Amin, “One shot associative memory method
for distorted pattern recognition,” in Proc. 20th Austral. Joint Conf. Artif.
Intell., vol. 4830. Gold Coast, QLD, Australia, 2007, pp. 705–709.

[4] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognit. Comput., vol. 1, no. 2, pp. 139–159, Oct. 2009.

[5] S. D. Levy and R. Gayler, “Vector symbolic architectures: A new
building material for artificial general intelligence,” in Proc. Conf. Artif.
General Intell., 1st AGI Conf., 2008, pp. 414–418. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1566174.1566215.

[6] T. A. Plate, “Holographic reduced representations,” IEEE Trans. Neural
Netw., vol. 6, no. 3, pp. 623–641, May 1995.

[7] S. I. Gallant and T. W. Okaywe, “Representing objects, relations, and
sequences,” Neural Comput., vol. 25, no. 8, pp. 2038–2078, 2013.

[8] R. Zbikowski, “Fly like a fly [micro-air vehicle],” IEEE Spectr., vol. 42,
no. 11, pp. 46–51, Nov. 2005.

[9] Y. M. Song et al., “Digital cameras with designs inspired by the
arthropod eye,” Nature, vol. 497, no. 7447, pp. 95–99, May 2013.

[10] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable mem-
ory (CAM) circuits and architectures: A tutorial and survey,” IEEE
J. Solid-State Circuits, vol. 41, no. 3, pp. 712–727, Mar. 2006.

[11] D. I. Perrett, E. T. Rolls, and W. Caan, “Visual neurones respon-
sive to faces in the monkey temporal cortex,” Experim. Brain Res.,
vol. 47, no. 3, pp. 329–342, 1982. [Online]. Available: http://dx.doi.org/
10.1007/BF00239352.

[12] P. Kanerva, Sparse Distributed Memory. Cambridge, MA, USA:
MIT Press, 1988.

[13] H. Meng et al., “A modified sparse distributed memory model for
extracting clean patterns from noisy inputs,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jun. 2009, pp. 2084–2089.

[14] D. A. Rachkovskij, E. M. Kussul, and T. N. Baidyk, “Build-
ing a world model with structure-sensitive sparse binary distributed
representations,” Biol. Inspired Cognit. Archit., vol. 3, pp. 64–86,
Jan. 2013. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S2212683X12000552.

[15] J. T. Abbott, J. B. Hamrick, and T. L. Griffiths, “Approximating bayesian
inference with a sparse distributed memory system,” in Proc. 34th Annu.
Conf. Cognitive Sci. Society, 2013, pp. 1–6.

[16] P. Kanerva, “Fully distributed representation,” in Proc. Real World
Comput. Symp. (RWC), 1997, pp. 358–365.

[17] D. Kleyko, E. Osipov, N. Papakonstantinou, V. Vyatkin, and A. Mousavi,
“Fault detection in the hyperspace: Towards intelligent automation
systems,” in Proc. IEEE 13th Int. Conf. Ind. Inform. (INDIN), Jul. 2015,
pp. 1219–1224.

[18] D. Kleyko and E. Osipov, “Brain-like classifier of temporal patterns,”
in Proc. Int. Conf. Comput. Inf. Sci. (ICCOINS), 2014, pp. 1–6.

[19] K. J. Schultz, F. Shafai, and G. F. R. Gibson, “Content addressable
memory system with cascaded memories and self timed signals,”
U.S. Patent 6 230 236, May 8, 2001.

[20] P. Kanerva, “A family of binary spatter codes,” in Proc. Int. Conf. Artif.
Neural Netw. (ICANN), 1995, pp. 517–522.

[21] D. Rasmussen and E. Eliasmith, “A neural model of rule generation in
inductive reasoning,” Topics Cognit. Sci., vol. 3, no. 1, pp. 140–153,
2011.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KLEYKO et al.: BIOINSPIRED ARCHITECTURE FOR PATTERN PROCESSING 13

[22] B. Emruli, R. W. Gayler, and F. Sandin, “Analogical mapping and
inference with binary spatter codes and sparse distributed memory,” in
Proc. IJCNN, 2013, pp. 1–8.

[23] D. Kleyko, E. Osipov, R. W. Gayler, A. I. Khan, and A. G. Dyer,
“Imitation of honey bees’ concept learning processes using vec-
tor symbolic architectures,” Biol. Inspired Cognit. Archit., vol. 14,
pp. 57–72, Oct. 2015.

[24] D. Kleyko, E. Osipov, M. Björk, H. Toresson, and A. Öberg,
“Fly-the-Bee: A game imitating concept learning in bees,” Procedia
Comput. Sci., vol. 71, pp. 25–30, Dec. 2015.

[25] S. D. Levy, S. Bajracharya, and R. W. Gayler, “Learning behavior
hierarchies via high-dimensional sensor projection,” in Proc. Workshops
27th AAAI Conf. Artif. Intell., 2013, pp. 1–3. [Online]. Available:
http://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/view/7075.

[26] D. Kleyko, N. Lyamin, E. Osipov, and L. Riliskis, “Dependable MAC
layer architecture based on holographic data representation using hyper-
dimensional binary spatter codes,” in Multiple Access Communications,
Berlin, Heidelberg: Springer, 2012, pp. 134–145.

[27] P. Jakimovski, H. R. Schmidtke, S. Sigg, L. W. F. Chaves, and M. Beigl,
“Collective communication for dense sensing environments,” J. Ambient
Intell. Smart Environ., vol. 4, no. 2, pp. 123–134, Mar. 2012.

[28] M. Gardner, “Mathematical games,” Sci. Amer., vol. 223, no. 4,
pp. 120–123, Oct. 1970.

[29] T. A. Plate, “Distributed representations and nested compositional struc-
ture,” Ph.D. dissertation, Dept. Comput. Sci., Univ. Toronto, Toronto,
ON, Canada, 1994.

[30] D. Kleyko and E. Osipov, “On bidirectional transitions between localist
and distributed representations: The case of common substrings search
using vector symbolic architecture,” Procedia Comput. Sci., vol. 41,
pp. 104–113, Dec. 2014.

[31] D. A. Rachkovskij, S. V. Slipchenko, E. M. Kussul, and T. N. Baidyk,
“Sparse binary distributed encoding of scalars,” J. Autom. Inf. Sci.,
vol. 37, no. 6, pp. 12–23, 2005.

[32] D. A. Rachkovskij, “Formation of similarity-reflecting binary vectors
with random binary projections,” Cybern. Syst. Anal., vol. 51, no. 2,
pp. 313–323, 2015.

[33] O. Räsänen, “Generating hyperdimensional distributed representations
from continuous valued multivariate sensory input,” in Proc. 37th Annu.
Meeting Cognit. Sci. Soc., 2015, pp. 1943–1948.

[34] D. Widdows and T. Cohen, “Reasoning with vectors: A continuous
model for fast robust inference,” Logic J. IGPL, vol. 23, no. 2,
pp. 141–173, 2015.

Denis Kleyko received the bachelor’s (Hons.)
degree in telecommunication systems and the mas-
ter’s (Hons.) degree in information systems from
the Siberian State University of Telecommunica-
tions and Information Sciences, Novosibirsk, Russia,
in 2011 and 2013, respectively. He is currently
pursuing the Ph.D. degree with the Dependable
Communication and Computation Systems Group,
Department of Computer Science, Electrical and
Space Engineering, Luleå University of Technology,
Luleå, Sweden.

His current research interests include high-dimensional computing,
bioinspired cognitive architectures, and machine learning.

Evgeny Osipov completed a pre-doctoral pro-
gramme at the EPFL Swiss Federal Institute of
Technology, Lausanne, Switzerland, in 1999, and
received the Licentiate of Engineering degree from
the KTH Royal Institute of Technology, Stockholm,
Sweden, in 2003, and the Ph.D. degree in computer
science from the University of Basel, Basel, Switzer-
land, in 2005.

He is currently a Full Professor with the Depend-
able Communication and Computation Systems
Group, Luleå University of Technology, Luleå,

Sweden. He has authored or co-authored over 60 publications in
computer science and engineering venues. His current research inter-
ests include cognitive computing and novel communication architec-
tures applied to various scenarios of future cyber-physical systems and
Internet-of-Things.

Prof. Osipov is a co-recipient of large research grants from the Swedish
Research Council, the European Commission, the Swedish Research and
Innovation Agency, and private foundations.

Alexander Senior received his B.Sc. and B.Eng.
(Hons) degrees from Monash University, Clayton,
VIC, Australia, where he is currently pursuing a
Ph.D. degree.

His current research interests include wireless sen-
sor networks and distributed systems.

Mr. Senior has been privileged to participate in
international research thanks to the STINT Grant by
the Swedish Foundation for International Coopera-
tion in Research and Higher Education.

Asad I. Khan received the bachelor’s degree from
the University of Engineering and Technology,
Lahore, Pakistan, and the master’s with distinction
degree and the Ph.D. degree in engineering from
Heriot-Watt University, Edinburgh, U.K.

He was appointed as a Lecturer with
Heriot-Watt University, and held a senior IT
management position with Monash University,
Clayton, VIC, Australia, where he is currently a
Tenured-Track Faculty Member with the Faculty
of Information Technology. He has authored over

100 refereed publications, including two research monographs and several
book chapters with three in Wiley’s in 2010 The PROSE Award Honorable
Mention Winning Title.

Dr. Khan is a co-recipient of large research grants from the Australian
Research Council and the Department of Education Science and Training.
He is a main foreign recipient of an Inter-Institutional STINT Grant by the
Swedish Foundation for International Cooperation in Research and Higher
Education. His work on parallel and bioinspired computing methods has
led to several large research grants and the National HPC Award from the
British Science and Research Council and leading industrial bodies in the
U.K. and Australia.

Y. Ahmet Şekercioǧlu received the B.Sc. and
M.Sc. degrees from Middle East Technical Uni-
versity, Ankara, Turkey, and the Ph.D. degree
from the Swinburne University of Technology,
Melbourne, VIC, Australia, all in electrical and
electronics engineering.

He held numerous positions as a Research
Engineer with the private industry, prior to his acad-
emic career. He was a Lecturer with the Swinburne
University of Technology for eight years. He was
the Leader of the Applications Program of the

Australian Telecommunications Cooperative Research Centre until the com-
pletion of the center’s research activities in 2007. Until 2015, he was a member
of the Academic Staff with the Department of Electrical and Computer
Systems Engineering, Monash University, Clayton, VIC, Australia. He has
established the Monash’s Wireless Sensor and Robot Networks Laboratory.
He is currently a Professorial Fellow with the Heudiasyc (Heuristics and
Diagnostics for Complex Systems) Laboratory, Compiègne University of
Technology, Compiègne, France. He leads a number of research projects
on distributed algorithms for self-organization in mobile visual sensor and
ad hoc networks, and networked robotics. He has authored over 130 papers
in various forums, and graduated 15 Ph.D. and master’s students (by Research)
so far.

