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Abstract—Clustering algorithms have been widely used in
wireless sensor networks for virtual backbone construction. They
organize the nodes into smaller groups and form a structured
topology allowing more efficient bandwidth usage and battery
consumption. As the clustering algorithms are usually used for
routing, it is crucial to measure the efficiency of the generated
backbone in information transport. Failure to do so will impact
the routing performance and reduce the reliability of the system.

This paper investigates whether the backbone formed by
clustering algorithms is able to preserve the routing paths
of the network. This property is evaluated by comparing the
performance of several clustering algorithms with respect to the
average path length. In order to obtain accurate results, the
performance is investigated under different network sizes as well
as network densities.

I. INTRODUCTION

Wireless sensor networks (WSNs) are self-organizing and
autonomous networks composed of sensor nodes typically de-
signed for event monitoring. These sensor nodes are equipped
with data processing, sensing, storage and communication ca-
pabilities which make them suitable for numerous applications
ranging from military, civil, industrial to health. The nodes are
built to be low-cost and small-size; allowing them to be used
in large numbers to accomodate for any failures during de-
ployment. The networks do not require physical infrastructure
and operate wirelessly, thus resulting in minimum set-up and
maintenance costs.

WSNs have dynamic network topologies which need fre-
quent updates in the case of hardware failures, mobility or
energy depletion. Also, the small-size nodes imply that their
energy, processing and storage capabilities are severely con-
strained. Due to these characteristics, efficient techniques that
require careful resource management are crucial to support the
networks. Clustering technique is among the most proposed
solution for this problem.

In WSNs, network clustering is used to construct a tempo-
rary infrastructure to support various tasks including routing.
It organizes the network into a hierarchical structure to achieve
ease of network management, minimum network maintenance
and reduction in communication overheads. The basic concept
of clustering is to organize sensor nodes into groups thereby
offering the network with a logical organization. Each group
must contain at least one leader called clusterhead node which
is assigned to special tasks while the remaining nodes become
the non-clusterhead nodes. The non-clusterhead nodes utilize
the clusterhead nodes for data forwarding. This reduces the

energy associated with transmission and improves the overall
network lifetime. As the clusterheads are loaded with various
tasks such as data processing and aggregation, they are most
likely to experience energy depletion. This problem can be
solved by rotating the role of the clusterhead among nodes.

In order to support routing, the backbone formed by the
clustering algorithms must preserve the average path length
property of the original topology. In a WSN, average path
length is defined as the average shortest path between a node
and sink. The shortest path length between a sensor node and
a sink node indicates that nodes can relay packets via a shorter
path, hence less energy is consumed. The absence of a path
between a node and the sink indicates that the network is
partitioned.WSNs are commonly known to be highly exposed
to radio-links failures such as signal attentuation, radio inter-
ference and fading. If a link failure breaks the shortest path,
a new path should be available to support the routing or else
the network will be disconnected. However, a new path that is
longer than the shortest path will result in additional energy
consumption.

Minimizing the backbone size to reduce the network over-
head is a common objective of the clustering algorithms.
Links that initially exist in the original topology prior to the
application of clustering might be removed hence, limiting
the number of paths to traverse. In this paper, we make
an effort to investigate the existence of the average path
length in the backbone and study how much it is affected
by the clustering. The ability of the algorithms to maintain
this property will greatly impact the routing performance as
well as the energy consumption. It is interesting to find out
whether the investigated path length is in close agreement
with the path length of the original topology. In this paper, a
number of leading clustering algorithms [1]–[3] were chosen
to collect this information and they were simulated under
various realistic network topologies using the OMNeT++
simulator [4].

The rest of this paper is organized as follows. Section II
presents the background on the clustering techniques. Section
III describes the assumptions and implementation of the work.
Section V provides the simulation results. Finally, Section VI
concludes our work and discusses our future work.

II. BACKGROUND OF CLUSTERING ALGORITHMS

Various clustering algorithms have been surveyed in [5].
These algorithms can be classified into two approaches; dis-



tributed or centralized. Distributed approaches can deal with
the dynamic nature of the networks as supposed to centralized
approaches, in which they can quickly adapt to any changes in
the links between nodes. Centralized approaches on the other
hand rely on the assumption that the global information is
available when gathering information from all nodes in the
network. As a result, they require a significant amount of
message overhead.

There are various cluster-based algorithms such as LEACH
[6], HEED [7], DSBCA [8] and PEGASIS [9] which are
designed for balancing the load and extending the network
lifetime. Another type of cluster-based algorithms is based on
the dominating set concept which is the focus of this paper.
We give the definition of the dominating set concept in Section
II-A before discussing the leading dominating set algorithms.

A. Dominating Set (DS) and Connected Dominating Set
(CDS) Terminologies

A dominating set (DS) is defined as a subset S ⊆ V if and
only if every node in the graph G = (V,E) is either in S or at
least one-hop away from a node in S. A dominating set of G
which induces a connected subgraph of G forms a connected
dominating set (CDS). Figure 1 illustrates this concept. In a
network, a set of nodes is defined as a dominating set (DS) if
all nodes are either in the set or have a neighboring node in
the set. To create the network backbone, the dominating set
must remain connected in the network. This connected DS is
referred to a CDS.

Fig. 1. Cluster formation using the dominating set and connected dominating
set concepst.

B. Related CDS based Algorithms
Wu et al. [10] proposes a simple distributed and localized

connected dominating set (CDS) algorithm. This algorithm
operates in two phases using a marking process. At the
beginning of the first phase, all nodes are unmarked. If
these nodes have two unconnected neighbors they are then
marked as dominators to form the CDS. Since this rule is

a greedy method, the size of the generated CDS is typically
not minimized. To reduce the CDS size, two pruning rules
are introduced in the second phase to remove the redundant
CDS. The pruned nodes which used to be the CDS nodes will
become the non-CDS nodes. The applied pruning rules are
(i) eliminate node u if its neighbor has higher ID and can
cover all of its neighbors or (ii) remove node u if it has two
connected neighbors with higher ID which can cover all of its
neighbors. The algorithm is popular due to its simplicity and
quick formation of the CDS. PACDS outperforms classic CDS
algorithm in [11]. This algorithm is later expanded to power
aware CDS (PACDS) [1] algorithm to extend the network
lifetime and further minimize the CDS size. It is common for
the CDS nodes to be overloaded with various tasks and they
usually are the first to experience energy depletion. To solve
this limitation, the role of the CDS is distributed fairly among
nodes with higher residual energy. PACDS operates in two
phases. The first phase involves the marking rule similar to the
one in [10]. The second phase on the other hand introduces
several pruning rules that consider new parameters such as
number of neighbors(node degree) and energy level when
forming the CDS. Although both algorithms have the ability
to converge fast, the amount of exchanged messages involved
is significant, thus it may quickly deplete the energy reserves
in the network.

Similar work to the PACDS is conducted by Yuanyuan et
al. [2]. The authors introduce energy-efficient CDS (ECDS)
algorithm to address the energy constraints and the size of
the backbone. Unlike the algorithm in [10], the ECDS uses a
coloring technique to differentiate various role of the nodes.
The formation of the CDS involves two phases. The first phase
builds a dominating set called a maximal independent set
(MIS) while the second phase identifies gateway nodes to join
the MIS. The selection of the MIS and gateways is based on
the node degree and node’s energy reserve. Our work in [12]
shows that in dense network, the ECDS can generate a smaller
CDS size compared to PACDS at the expense of high message
complexity associated with acquiring neighbor’s weight and
updating nodes’ status.

The aims of SPSI [3] are twofold: form a small set of CDS
and minimize the message overhead. Contradictory to PACDS
and ECDS, SPSI forms a CDS in a single phase. SPSI clas-
sifies nodes into two categories; dominators and dominatees.
Dominators represent the CDS while the dominatees represent
the non-CDS nodes in the network. Each dominator uses a
greedy approach when selecting the CDS nodes among its one-
hop neighbors. The chosen dominator neighbors then continue
the search of dominators among their one-hop neighbors. This
process is repeated until all nodes become dominators or have
been covered by at least one dominator. The small size CDS is
obtained by minimizing the number of chosen dominators. By
utilising the two-hop neighborhood information, the enhanced
greedy MPR algorithm in [13] is used to achieve this. Two-
hop neighbor information as supposed to one-hop neighbor
information allows the dominators to eliminate the redundant
coverage of its one-hop neighbors resulting in minimum CDS



size. For example, the dominators can choose its one-hop
neighbors that can cover the largest number of two-hop neigh-
bors to become dominators. The advantage of SPSI is that it
can build a CDS quickly using minimum energy resources and
low communication overhead.

III. ASSUMPTIONS AND IMPLEMENTATION

In this section, the description on the assumptions and the
detailed implementation of the study are presented.

A. Network Model
An undirected graph G = (V,E) is used to represent

the WSN, where V is a set of sensor nodes in the network,
called vertices and E is a set of a communication link
between a pair of sensor nodes, called edges usually denoted
as (u, v) ∈ E. Two vertices u and v are neighbors if (1) they
are within their maximum transmission range Rmax and (2)
the communication links between them are symmetrical. We
assume all sensor nodes have same hardware capabilities. The
sink node on the other hand has more powerful communication
and processing features.

B. Average Path Length
Average path length is one of important measures of clus-

tering given that the network topology generated is often
used for routing. A path P in a graph G is a sequence of
vertices connected by edges. To find the average shortest path
length in the graph G = (V,E), the greedy method based on
classical Dijktra’s algorithm is applied on the network. The
main objective is to find the shortest path from each node i
in the graph to a sink node j in which the edge weight is
the distance between the vertices. It is assumed that the graph
G is connected if the shortest path length between these two
nodes is a finite number and it is disconnected if there is no
connecting edge between the nodes.

In this paper, Dijkstra’s technique was adopted to obtain
the shortest path length measure. A total of 150 topologies
were used to obtain the shortest path length measure. These
topologies were referred to the original topologies. The clus-
tering algorithms also utilize these topologies to form the
backbone or clusters. Recall that the backbone topology is
derived from the original topology in which the number of
nodes remain the same except that redundant links in the
backbone topology might be removed. Thus, it is possible for
the backbone topology to have longer path between nodes.
In order to investigate the performance of the average path
length in the original topologies against the topologies of the
backbone, we compute the average shortest length on both
(i) original topologies and (ii) topologies constructed by the
clustering algorithms (known as backbones).

IV. PERFORMANCE OF ALGORITHMS

SPSI algorithm has the following performance:

Theorem 1. SPSI has O(n) message complexity and
O(3∆C + 3∆) time complexity, where n is defined as the

overall number of nodes, ∆ is the maximum node degree while
C is the number of selected connectors.

Proof. SPSI has O(n) message complexity because each
node u exchanges exactly one message when building the
CDS.

The time complexity of the SPSI algorithm refers to
the amount of time required for computing the connector
set. SPSI takes the advantage of MPR property [13] when
determining the connector, where the time complexity of the
SPSI algorithm is O(3∆C + 3∆).

ECDS algorithm has the following performance:

Theorem 2. ECDS has O(n) message complexity and O(n)
time complexity, where n is defined as the total number of
nodes.

Proof. Each node sends at most one message during the
first and second phase of the algorithm. Hence, its message
complexity is is O(n).

The time complexity of ECDS is bounded by the MIS
construction in which node requires at most O(n) time
complexity.

PACDS algorithm has the following performance:

Theorem 3. PACDS has O(m) message complexity and
O(∆3) time complexity, where m is the number of edges and
∆ is the maximum nodal degree.

Proof. The message complexity of PACDS is contributed
by the number of messages sent to each edge, in this case
are two messages. Whereas the time complexity refers to the
O(∆3) time required for constructing and pruning the CDS.

V. SIMULATIONS AND DISCUSSIONS

In this section, we present our simulation results. We
evaluated the presence of the average path length with respect
to network density (or average node degree) and network sizes
to investigate the scalability of the algorithm. We also compare
the performance of all algorithms to study how well they
preserve the average path length.

The discrete event simulator OMNeT++ (version 4.1) [4]
was used for simulating various algorithms. In order to have
more realistic model, MiXiM [14] which is an extension of
OMNeT++ framework was used to provide models of radio
wave propagation and MAC protocols. Realistic topologies
that were extended from a small network calibrated using the
testbed in our department were created. We generated different
types of topologies to represent various network sizes and
densities. These topologies are categorized into three densities;
sparse network (node degree 4), medium network (node degree
8) and dense network (node degree 12). To obtain various
network sizes we varied the number of nodes N in each
density from 100 to 500 with an interval of 100. To achieve a
95% confidence interval, the simulations were repeated with
10 runs. We assumed that the nodes were deployed in a 2D
dimensional space and their transmission range varied.



A. The Effect of Network Densities on the Average Path Length
We first studied the average path length over various net-

work densities ranging from sparse, medium to dense. It is
evident from Figures 2(a), 2(b) and 2(c), the average path
length decreases as the topologies become denser. As the
network becomes denser, the number of available paths from
a source node to a destination node also increases. This
allows nodes to route through a shorter path, resulting in a
shorter path length value. Contradictory to dense networks,
the average path length of sparse networks yields the largest
value due to limited route choices.

Among the three algorithms, the ECDS provides a signif-
icant improvement in the path length as the topologies are
varied from sparse to dense, in which the path length of the
dense topology is 50% lower than the path length of the sparse
topology. Whereas the path length of the PACDS and SPSI
drops to 44% as the topologies were varied from sparse to
dense.

B. Performance Comparison of Algorithms
We also compared the average path length gained for

backbone and original topologies against the network sizes.
In general, the average path length increases as the network
size increases from 100 to 500 as shown in Figures 3(a), 3(b)
and 3(c). This can be explained by the fact that the number of
paths to traverse from a source to a destination node increases.

It is clear that PACDS yields the lowest average path length
followed by SPSI and ECDS. For sparse network, the path
length of the PACDS is 13% lower than the path length
of the ECDS, followed by 38% and 20% lower than the
path length of the ECDS in medium and dense networks
respectively. PACDS creates a larger backbone size than the
SPSI and ECDS due to its less efficient rule in constructing
the backbone. Larger backbone means that there are more
available paths to traverse resulting in better path length.
ECDS on the other hand has smaller backbone size thus
limiting the choice of routing through shorter links.

The PACDS and SPSI yield about the same path length
values in all three network densities.The figures indicate the
average path length of the original topologies which were used
to build the backbone. It is obvious that ECDS, SPSI and
PACDS are able to preserve the path length property since
their path length values are in close agreement with the path
length of the original topologies.

VI. CONCLUSION

In this paper, we have compared the ability of clustering
algorithms in preserving the path length property. We showed

that the average path length increased with the network sizes
but decreased with the network densities. The simulation
results confirmed that the path length calculated over the
original topologies is in close agreement with the path length
computed on the backbone topologies. In the future, we would
like to investigate the performance of routing algorithms on
the backbone topologies. It would be interesting to study the
effect of mobility on these clustered networks.
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(a) Comparison of average path length against network densities for ECDS.
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(b) Comparison of average path length against network densities for PACDS.
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(c) Comparison of average path length against network densities for SPSI.

Fig. 2. Average path length versus various network densities.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100  150  200  250  300  350  400  450  500

A
ve

ra
ge

 S
ho

rt
es

t P
at

h 
Le

ng
th

Number of Nodes

PACDS
ECDS
SPSI

OriTopo

(a) Average path length versus network size for sparse network.
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(b) Average path length versus network size for medium network.
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(c) Average path length versus network size for dense network.

Fig. 3. Average path length comparison against network size.


