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We present a new low-complexity algorithm for controlling a stepper motor to rotate with constant
acceleration or deceleration. It can be operated on a basic low-end microcontroller and does not require
any data tables. Also, it does not have the limitation of the motor having to start from standstill. The algo-
rithm was tested using a small robot programmed to move and change acceleration ‘on the run’. The the-
oretical foundations for further improving the timing accuracy of the algorithm were also derived.
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1. Introduction

Stepper Motors are used in many small devices which require
relatively fast speeds or high torques. The physical architecture
of the motor also allows for the motor’s position to be controlled
accurately without the need for close-loop feedback techniques.
For some purposes, the use of wheel encoders can then be ne-
glected – particularly for static loads [2].

There is currently ample research on operating motors with
constant speed. The practical applications for constant speed are
obvious. Most techniques – if not all – use close-loop feedback
techniques. Mukherjee et al. in [3] provides a solution for self-con-
trolled synchronous motors. Likewise Hu et al. in [4] provides a
solution for brushless DC motors. Both techniques however pro-
vide no method to traverse between two different constant speeds
(i.e. accelerate/decelerate) in a smooth and consistent manner.

There are also many applications which require constant acceler-
ation or deceleration in its own right. Athani in [5] mentions their
heavy industrial use in Computer Numerical Control Systems. Other
uses include high speed pick and place equipment. In the field of la-
sers and optics, they are frequently used in precision positioning
equipment too. Prior to Austin’s approach in [1], the timing of the
step pulses were considered too complicated to calculate in real time
[1]. The solution was either to use precompiled timing data for the
desired acceleration rates or more powerful microcontrollers. The
first solution is inflexible and the second solution conflicts with
the general aim to minimise use of unnecessary resources.
Austin’s approach however assumes that acceleration begins
when the stepper motor is at standstill. This is an unacceptable
limitation to many projects. This paper presents a generalisation
of Austin’s approach so that a stepper motor can accelerate or
decelerate at any desired constant rate irrespective of the starting
angular velocity.

2. Definitions and preliminary remarks

To understand why it had been difficult to create constant
acceleration on stepper motors accurately before [1], the nature
of the stepper motor must be understood.

When you accelerate a non-stepper motor, at regular time
intervals you make it rotate a given amount. If the desired acceler-
ation rate is 1 rad/s2, within the duration of the 1st second the mo-
tor would be programmed to rotate 1 radian. Within the 2nd
second, the motor would be programmed to rotate 2 radians and
so on and so forth.

A stepper motor moves in fixed angle intervals unlike typical
motors. Each ‘step’ rotates the motor by an angle of a radians.
For a typical hobby stepper motor, a is 1.8 degrees. This means
200 steps must fire in order to rotate a full 360 degrees.

Consequently, this discrete nature means a stepper motor can-
not rotate 2 degrees. If a rotation of 2 degrees is required, you must
either rotate 1.8 degrees or rotate 2 � 1.8 = 3.6 degrees.

With a stepper motor, due to its discrete rotatable angles, it is
not viable to rotate the motor the required angle to regular time
intervals. Rather, Austin’s approach varies the time intervals to reg-
ular a intervals. This paper utilises the same principle.

Many basic microcontrollers come with a timer module which
increments a 16-bit counter value at a fixed frequency ft. Typically
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the fixed frequency is determined by the external clock of the
microcontroller. When the counter value reaches an arbitrarily
set comparison value c, it triggers an interrupt and then resets back
to zero. Since the counter value is reset back to zero, the process
repeats and the interrupt is fired at a regular interval. The pro-
grammer can execute code in the interrupt (i.e. send step pulse
to the motor to rotate it by a degrees) knowing that it will execute
more or less at a regular interval.

The time intervals between each step pulse are varied by chang-
ing the comparison value c of the timer module.

dt ¼ c
ft

ð1Þ

Since ft is fixed, the comparison value c is changed to get the desired
dt time interval to rotate the stepper motor a radians.

It can also be seen that the motor angular speed x at any given
time is:

x ¼ aft

c
ð2Þ

This paper derives a new time-interval-update function that up-
dates c allowing for acceleration variations irrespective of the initial
angular velocity xi (and thus allowing for changes in the accelera-
tion rate in real-time).

3. Theoretical derivation

From Fig. 1, it can be seen that xðsÞ ¼ �_xsþxi. To work out the
total angle h rotated from s = 0 to an arbitrary time t,x(s) must be
integrated. The total angle rotated must equal a multiple of a for a
stepper motor.Z t

0
xðsÞds ¼ 1

2
�_xs2 þxis

� �t

0
¼ 1

2
�_xt2 þxit ¼ na;

where n 2 Zþ ð3Þ

This necessarily implies that t cannot be any arbitrary R but must
be at discrete intervals denoted tn for each corresponding n.

1
2

�_xt2
n þxitn � na ¼ 0

tn ¼
�xi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i � 4 1
2

�_x
� �

ð�naÞ
q

2 1
2

�_x
� � ¼

�xi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xna
q

�_x
since tn P 0

ð4Þ
Fig. 1. Angular velocity profile.
The exact timer comparison value cn required to program the re-
quired delay between the nth and (n + 1)th pulse (n P 0) is accord-
ing to Eq. (1):

cn ¼ ftðtnþ1 � tnÞ

¼ ft

�xi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xðnþ 1Þa
q� �

� ½�xi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xna
q

�

�_x

8>><
>>:

9>>=
>>;

¼ ft

�_x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xðnþ 1Þa
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xna
q� �

ð5Þ

It should also be noted that when xi = 0 (acceleration from stand-
still), Eq. (5) simplifies to Eq. (8) in [1]:

cn ¼ ft

ffiffiffiffiffiffi
2a
�_x

s
ð
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
�

ffiffiffi
n
p
Þ ¼ coð

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
�

ffiffiffi
n
p
Þ ð6Þ

The c0 value (i.e. when n = 0) is important further along the deriva-
tion. It should be noted now however:

c0 ¼
ft

�_x
�xi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xa
q� �

ð7Þ

Eq. (5) with two square roots is computationally expensive for basic
low-end microcontrollers to calculate in real-time. It can be approx-
imated using Second-Order Newton Expansion:

ð1þ xÞW ¼ 1þWxþWðW� 1Þ
2!

x2 þ � � � ð8Þ
3.1. Approximation

cn

cn�1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xðnþ 1Þa
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xna
q� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xðnÞa
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xðn� 1Þa
q� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xna
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
i þ 2 �_xðnþ 1Þa

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xna
q � 1

2
64

3
75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xna
q

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xðn� 1Þa
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xna
q

2
64

3
75

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xðnþ 1Þa
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xna
q � 1

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xðn� 1Þa
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xna
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xðnþ 1Þa
x2

i þ 2 �_xna

s
� 1

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xðn� 1Þa
x2

i þ 2 �_xna

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 �_xa

x2
i þ 2 �_xna

s
� 1

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 �_xa

x2
i þ 2 �_xna

s ð9Þ

Now applying Second-Order Newton Expansion to Eq. (9) using the
identity in Eq. (8) leads to:
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After rearranging to obtain the new comparison value as a function
of the old comparison value:

cn ¼ cn�1 �
2a �_xcn�1

2x2
i þ a �_xð4nþ 1Þ

ð11Þ

This is an important result. It is the new time-interval-update
function which does not require the starting angular velocity
to be zero. It is also recursive in nature which is less computa-
tionally expensive than otherwise.

It should also be noted that when xi = 0 (acceleration from
standstill), Eq. (11) simplifies to Eq. (12) in [1]:

cn ¼ cn�1 �
2cn�1

4nþ 1
ð12Þ

Eq. (11), whilst simple and easy to implement, is not necessarily
accurate since it relies on a Second-Order Newton Expansion
approximation.

Austin in [1] tabulates the accuracy of his approach for
cn

cn�1
,

remembering that his results are based on the assumption that
xi = 0:

Austin defines Relative Error as relative error ðnÞ ¼
Approx ðnÞ � Exact ðnÞ

Exact ðnÞ (Table 1).

Austin notes that the relative error is unacceptably high for
n = 1. An unacceptably high relative error would obviously be a
greater concern in a generalisation of Austin’s approach.

To rectify the problem, it is suggested that when xi = 0, Eq. (7)
(also Eq. (7) in [1]) be multiplied by a magic multiple 0.676. Austin
gives no explanation or clues to where it comes from:

c0 ¼ 0:676 f t

ffiffiffiffiffiffi
2a
�_x

s
ð13Þ
Table 1
Relative error in Austin’s time-interval-update function [1].

Step n Exact (9) Approx (11) Relative error

1 0.4142 0.6000 0.4485
2 0.7673 0.7778 0.0136
3 0.8430 0.8462 0.00370
4 0.8810 0.8824 0.00152
5 0.9041 0.9048 7.66E�04
6 0.9196 0.9200 4.41E�04
10 0.9511 0.9512 9.42E�05
100 0.9950 0.9950 9.38E�08
1000 0.9995 0.9995 9.37E�11
A more complex version of the magic multiple is needed for a gen-
eralisation of Austin’s approach.

4. Finding the magic multiple

It is not necessarily reasonable to assume that Eq. (11) is a good
approximation for Eq. (5). Since Eq. (11) is a f ða; �_x;xiÞ, there are
many degrees of freedom for inaccuracies so applying a pre-deter-
mined constant magic multiple is not generally feasible.

Before exploring the nature of the magic multiple, firstly the ex-
act and approximate functions need to be clearly defined.

The exact time-interval-update function is from Eq. (5) and Eq.
(7):

cn ¼ exactðnÞ ¼
ft
�_x ½�xi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xa
q

�; n ¼ 0
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�_x ½
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q

�
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x2

i þ 2 �_xna
q

�; n > 0

8><
>:

ð14Þ

The approximate time-interval-update function is from (11).
Although the algorithm relies on the recursive function, the closed
function is also noted.

cn ¼ approxðnÞ

¼
exactð0Þ ¼ ft

�_x �xi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xa
q� �

; n ¼ 0

approxðn� 1Þ � 2a �_x� approxðn� 1Þ
2x2

i þ a �_xð4nþ 1Þ
; n > 0

8>>><
>>>:

¼
exactð0Þ ¼ ft

�_x
�xi þ
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x2
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q� �

; n ¼ 0

exactð0Þ �
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2x2
i þ a �_xð4k� 1Þ

2x2
i þ a �_xð4kþ 1Þ

; n > 0

8>>><
>>>: ð15Þ

It is assumed that Austin hypothesised that the relative error for all
n P 0 is defined irrespective of xi and �_x (provided �_x–0Þ. It is also
assumed that Austin hypothesised that for all n > 0 the limn?1 rel-
ative error (n) = some constant – 0. It is further assumed that Aus-
tin hypothesised that a magic multiple (independent of n) can
correct (or mitigate) the relative error.

This leads to the approximate time-interval-update function
with the magic multiple M applied:

cn ¼ M � approxðnÞ

¼
Ms � exactð0Þ ¼ Msft

�_x
�xi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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; n ¼ 0
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; n ¼ 0

Ms � exactð0Þ �
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2x2
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; n > 0

8>>><
>>>: ð16Þ

As such a new definition for the relative error follows:

relative error EðnÞ ¼ M � approxðnÞ � exactðnÞ
exactðnÞ

				
				 ð17Þ

This new definition for the relative error will help determine if
including a magic multiple to the approximate time-interval-up-
date function will correct (or mitigate) the relative error.

Secondly a test is required to determine when the magic multi-
ple (M) is optimised:

Let F ¼
X1
n¼0

E2 ¼
X1
n¼0

M � approxðnÞ � exactðnÞ
exactðnÞ

� �2

ð18Þ

We want to find M such that F is minimised:
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)M ¼
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If approx(n) can be converted to a closed function, then Eq. (20)
above can be applied quite easily. However it is suspected that
the hypothetical closed function would be extremely complicated
for a basic low-end microcontroller to implement. Furthermore an
infinite summation is not practical.

Consequently an alternative method is needed to determine the
magic multiple.
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Fig. 3. Absolute error jM �Msj.
5. Finding the magic multiple using matlab�

A general solution for the magic multiple is no longer attempted
in this paper. Instead a general technique is demonstrated to deter-
mine a practical solution for the magic multiple. For the remainder
of this paper, typical values for a hobby stepper motor are used.

5.1. Typical values used [6]

a ¼ 2p
200

rad ¼ 1:8�

ft ¼
16;000;000

1024
¼ 15;625

�_x ¼ ð0; 10 � ðin steps of 0:1Þ
xi ¼ ½0; 7:5 � ðin steps of 0:1Þ

NB: a and ft are fixed for any particular stepper motor and
microcontroller.

It should be noted that Austin in [1] recommends using the
highest frequency possible. A Pre-Scalar of 1024 was used without
any noticeable issues. The frequency has no bearing on the relative
error however.

It should also be noted that if the particular specifications differ
from above, it is then highly recommended to test the analysis
independently using a software package.

Since Eq. (20) is either too complex or impractical to imple-
ment, it is hypothesised that there exists an approximation of M,
denoted Ms, that is more simple or more practical for a basic
low-end microcontroller to implement.

I.e. Assume Ms exists such that maxðabsðEðnÞjM¼Ms ÞÞ < c.
The constant c is simply a subjective arbitrary threshold value

used to determine whether the relative error Eq. (17) from using
the approximate time-interval-update function with the magic
multiple Eq. (16) is deemed satisfactorily ‘good’. It can be assumed
that c = 0.03 for most intents and purposes.

To find a suitable Ms candidate, it is noted that the highest
derivative with respect to n of the E(n)jM=1 curve seems to occur
when n = 1 irrespective of xi and �_x. Fig. 2 illustrates this when
xi = 2 and �_x ¼ 1.

Since Eq. (15) is a recursive function where future values are
based on previous values, it may be worthwhile attempting to
eliminate the error early on with the hope that the carry-over ef-
fect reduces the error throughout. The largest change in relative er-
ror occurs at n = 1 so it is a good place to begin. From (14)–(16):
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q
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q
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� �
2x2

i þ 3a �_x
2x2

i þ 5a �_x

" #

Equating exact(1) = MS � approx(1):

Ms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
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q

�
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i þ 2 �_xa
q

�xi

� �
2x2

i þ 3a �_x
2x2

i þ 5a �_x

" # ð21Þ

To test the accuracy of Ms, it is compared to M using the absolute
error jM �Msj. M is calculated by truncating the infinite summation
in Eq. (20) to 1001 summations.

It can be seen from Fig. 3 that the maximum absolute error is
0.015947 for the relevant xi and �_x domain. This is acceptably
negligible.

It should be noted that the absolute error jM �Msj varies with
xi and �_x only, since neither M nor Ms are functions of n.

Although Ms may be a close approximate to M, our ultimate aim
is for the relative error to be as small as possible. The accuracy of
EðnÞjM¼Ms can be tested.
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Although Ms may be a close approximate to M, our ultimate aim
is for the relative error to be as small as possible. The accuracy of
EðnÞjM¼Ms can be tested.

It can be seen from Fig. 4a that when n = 0 the maximum rela-
tive error is 0.30964. This appears to be unacceptably large. How-
ever, since by definition approx(0) = exact(0), setting any M – 1 will
distort the relative error.

Since Ms was calculated by equating exact(1) = MS � approx(1),
naturally the relative error is 0 when n = 1.

The most important result can be seen from Fig. 4b. When
n = 1001, the maximum relative error seems to converge to
0.021269. It is also the maximum relative error in the range
n ¼ ½1; 1001 �. This is below the arbitrary threshold c = 0.03.
6. Comparison to results without magic multiple

The previous section shows that incorporating a Magic Multiple
(more specifically Ms) reduces the relative error to an acceptable
level. However, there is always the possibility that the relative er-
ror was already going to be below the threshold c = 0.03 even with-
out a Magic Multiple. This can be tested by substituting M = 1,
which is equivalent to no Magic Multiple being applied.

It can be seen in Fig. 5a that when n = 1, the maximum relative
error is 0.44853. It can also be seen in Fig. 5b that when n = 1001,
the maximum relative error seems to converge to 0.47934. Both are
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Fig. 5. Relative error E(n)jM=1 wh
unacceptably large. In fact throughout the range n ¼ ½1; 1001 �
the maximum relative error is unacceptable.

When compared to the results from the previous section, this
demonstrates that accuracy and performance is improved drasti-
cally when the approximate time-interval-update function is
changed so that c0 = Ms � approx(0).
7. Further improvements – initial ‘step’

Even when the approximate time-interval-update function is
changed to include the magic multiple, Fig. 4a shows that when
n = 0, the maximum relative error is unacceptably large. In Sec-
tion 5, the reason for this was stated but the merits were not
discussed.

It must be noted that the Magic Multiple by its derivation in
(20) and (21) is always a positive fraction less than one.

Austin in [1] states that this is beneficial because it means that
the initial step is programmed to ‘fire’ slightly earlier than it should
– from a physics point of view. He asserts that this compensates for
the initial inertia of the stepper motor.

Whilst the validity of Austin’s claim was not tested, it does seem
to make sense. However, the results of this paper are generalised so
that the stepper motor does not necessarily have to begin from
standstill.

Therefore, the first improvement suggested is for n = 0 to be
treated as a special case. For the first ‘step’ the Magic Multiple
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should not be applied (or alternatively, only applied it if the motor
is in standstill). It should only be applied on the second ‘step’. This
leads to the new improved approximate time-interval-update
function:

cn ¼ improved approxðnÞ

¼

exactð0Þ ¼ ft
�_x �xi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xa
q� �

; n ¼ 0

Msimproved approxðn� 1Þ � 2a �_x�Msimproved approxðn� 1Þ
2x2

i þ a �_xð4nþ 1Þ
; n ¼ 1

improved approxðn� 1Þ � 2a �_x� improved approxðn� 1Þ
2x2

i þ a �_xð4nþ 1Þ
; n > 1

8>>>>>>>>><
>>>>>>>>>:

¼
exactð0Þ ¼ ft

�_x �xi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ 2 �_xa
q� �

; n ¼ 0

Msexactð0Þ �
Yn

k¼1

2x2
i þ a �_xð4k� 1Þ

2x2
i þ a �_xð4kþ 1Þ

; n > 0

8>>><
>>>:
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Fig. 7. Relative Error without Ms applied (c = 0.03) (birds-eye view: xi � �_x plane).
8. Further improvements – simplification of magic multiple

Currently Ms requires two square root calculations which are
computationally expensive. This is similar to the exact time-inter-
val-update function (14) which justified the derivation of the
approximate time-interval-update function (15).

Unlike (14) which needs to be continually calculated and ap-
plied, Ms needs only to be calculated once and applied at the begin-
ning. This is computationally bearable unless the acceleration rate
is extremely frequently changed.
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If the acceleration rate is required to change frequently, Ms can
be further simplified.

Firstly an unacceptability threshold value c needs to be set. It
must realistically suit the intended purpose.

If the relative error exceeds c, then Ms must be applied. If how-
ever c is not exceeded, then Ms does not need to be applied at all.
This can save valuable computation power and time.

The graphs in Fig. 6 show the relative error when Ms is
not applied for n = 2. The black line represents the intersection
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points between the relative error surface plot and the rela-
tive error = c = 0.03 plane. Various angles of the same surface plot
are shown.

It was discovered that the black intersection line could be
approximated very closely by a quadratic curve.

The green dashed line overlaying the black intersection line is
the quadratic line-of-best-fit (see Fig. 7).

Listed below is a sample of quadratic lines-of-best-fit for vari-
ous n values. Fig. 8 shows the curves in a diagram.

�_x ¼ 23:3064x2
i � 0:0539xi � 0:0829; n ¼ 2

�_x ¼ 21:1932x2
i � 0:0661xi � 0:0702; n ¼ 6

�_x ¼ 20:8097x2
i � 0:1458xi � 0:0560; n ¼ 50

�_x ¼ 20:8041x2
i � 0:1473xi � 0:0558; n ¼ 100

�_x ¼ 20:8023x2
i � 0:1477xi � 0:0557; n ¼ 1000

It can be seen from Fig. 8 that as n ?1 the equation converges. A
software package can be used to predetermine the limiting qua-
dratic equation for the relevant xi and �_x domain.

Once determined, the time-interval-update algorithm can per-
form a simple logic-test based on the current xi and proposed �_x.
If the relative error is unacceptable, then Ms has to be applied. If
it is acceptable, then applying Ms can be forgone.

If there is concern that the simple logic-test is too complex, then
use of the limiting quadratic equation can be abandoned. Instead,
the limiting quadratic equation can provide guidance for an even
simpler test such as xi < 0.7.

9. Final notes – deceleration

Special care must be taken when �_x < 0 (deceleration). Before
applying Eq. (15), x2

i þ 2 �_xa
� �

must be tested for a non-negative
value (due to the square root). If it is negative, then the stepper
motor direction must be reversed.

If it is initially non-negative, then there is the possibility that cn

could exceed its upper limit (usually indicating acceleration in the
reverse direction). This should also be tested and the appropriate
action taken. Usually it consists of reversing the stepper motor
direction and making the acceleration positive.

10. Conclusion

This paper presented a new algorithm that can be used to gen-
erate constant acceleration or deceleration in a stepper motor. A
basic low-end microcontroller is more than adequate to implement
the algorithm in real time. The algorithm was tested successfully
using a small robot programmed to move and change acceleration
‘on the run’. Guidance on implementation of the algorithm is avail-
able in [7].

The theoretical foundations for further improving the timing
accuracy of the algorithm were also derived. These were not tested
using hardware.

It is anticipated that the results of this paper are relevant to var-
ious commercial applications such as in toy cars, and devices
which require a fine control of stepper motors.

Future improvements are possible – particularly in realizing the
new time-interval-update function for FPGA and other hardware
based implementations. In fact, Austin’s approach has recently
been successfully synthesised for FPGAs in [8–10].

As a final remark, the results of this paper have been patented in
Australia [11] with patents possibly pending in other jurisdictions.
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