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Abstract

This paper reports on the prediction of the expected positioning errors of robot manipulators due to the errors in their geometric parameters.
A Swarm Intelligence (SI) based algorithm, which is known as Particle Swarm Optimization (PSO), has been used to generate error estimation
functions. The experimental system used is a Motoman SK120 manipulator. The error estimation functions are based on the robot position
data provided by a high precision laser measurement system. The functions have been verified for three test trajectories, which contain various
configurations of the manipulator. The experimental results demonstrate that the positioning errors of robot manipulators can be effectively
predicted using some constant coefficient polynomials whose coefficients are determined by employing the PSO algorithm. It must be emphasized
that once the estimation functions are obtained, there may be no need of any further experimental data in order to determine the expected
positioning errors for a subsequent use in the error correction process.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Robot calibration; Particle Swarm Optimization; Error estimation and correction
1. Introduction

The accuracy of robot manipulators can be significantly
improved by implementing the calibration process that consists
of modeling, measurement, identification and correction stages.
Of these, the identification stage provides better estimates of
the parameters of the kinematic model. Even if it is possible
to dismantle a robot manipulator and determine the parameters
in its kinematic model, the resulting model will still contain
some inaccuracies arising from joint and link compliances
changing with the manipulator configurations [3], steady
state errors in joint positions, inaccurate knowledge of the
kinematic parameters, and payload carried by the manipulator.
It follows that it is necessary to identify parameters in the
kinematic model, and then consider them in kinematic error
correction, especially when it is not possible to use absolute
end point measurements for position feedback. As a result,
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a considerable amount of research has been devoted to the
kinematic identification and calibration of robotic systems
[9–11,13,17,21–26]. For example, Jang et al. [13] have
presented a calibration methodology based on dividing
the manipulator workspace into several local regions, and
subsequently building a calibration equation using a three
dimensional position measurement system consisting of a
camera and infrared LED. In the work relevant to this
study [16], the calibration of a Motoman P-8 robot was
performed using circle point analysis technique, which requires
external hardware to determine the manipulator end point
positions in Cartesian space. Although the topology of
their experimental system contained a five-bar mechanism,
the kinematic parameters of the mechanism had not been
taken into account during the kinematic calibration. Driels
and Pathre [9] have reported on the effects of initial
estimates of parameters, measurement accuracy and noise,
encoder resolution and uncertainty, selection of measurement
configurations, and of the number of measurements on
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Fig. 1. Schematic representation of the robot manipulator with D–H convention
and parameters. Note that the coordinate frames O2 and Ō3, and O4 and O5
are located at the same point.

the identification and observability of kinematic parameters
through a number of simulation results. Hollerbach and
Wampler [11] have provided a full account of previous
work in kinematic identification and calibration of robotic
systems, and introduced a calibration index based on the
system mobility equation. Zak et al. [22] proposed a kinematic
parameter estimation methodology, where a classical least
square estimation algorithm is replaced with a weighted least
square. Simulation results were presented to demonstrate that it
was possible to further improve the parameter estimates without
increasing the number of measurements. Renders et al. [17]
presented a robot kinematic parameter identification technique
based on a maximum likelihood algorithm in a recursive
form with a reasonable amount of computation time. Over
the last three decades, optimization methods inspired by the
complex natural systems have been used successfully in a
huge number of applications. Among them, artificial neural
networks, granular and evolutionary computation are the most
well known ones. In recent years, a new optimization method
has been developed based on the observations of intelligent
and efficient behavior of an overall system resulting from
the cooperation of individual entities employing a set of
relatively simple rules [4,6,8]. Biological examples of this
method include ant colonies, fish flocks and bee swarms. In
these examples, individuals communicate and coordinate via
a set of relatively simple rules, and their local interaction
and goal directed behavior lead to a global optimization of
the overall system. Artificial intelligence methods inspired
by these natural systems are called Swarm Intelligence [SI].
Successful applications of SI, especially the Particle Swarm
Optimization [PSO] algorithm, to optimization problems have
inspired us to employ it for predicting positioning errors of
robot manipulators. PSO is a method proposed by Kennedy
and Eberhart [15], and the algorithm is based on the foraging
behavior of animals, especially birds.
Table 1
The results of D–H parameters for a Motoman 120 SK manipulator and the
parallel mechanism

The shaded rows are for the parallel mechanism.

It is virtually impossible to consider all the sources
contributing to the pose errors while forming the kinematic
model of a robot manipulator. We, therefore, believe that the
search for yet more complex models to be incorporated within
the identification model to be a fruitless task. If the pose
errors of a robot manipulator are known as a function of the
manipulator configuration, they can be appropriately corrected
using a ‘false target’ technique [17]. With this in mind, the
determination of pose errors or positioning errors only (as
is the case in this study due to fact that the measurement
system can provide only position data) is considered as a
blackbox problem, employing computational models based on
the PSO algorithm. In this study, the computational model is
based on estimator functions that are generated automatically
using the position data for 85 identification configurations of
the manipulator measured by a high precision laser tracking
system [1–3]. Experimental results demonstrate that the robot
positioning errors can be effectively estimated using PSO based
optimization methods. This work contributes to previously
published work from the point of view of being a simple and
systematic approach to the self-calibration of robotic systems
with minimum experimental data.

2. Kinematic model

The schematic of the robot manipulator and the coordinate
frames needed to generate a kinematic model based on
Denavit–Hartenberg parameters are depicted in Fig. 1. The
kinematic model for the parallel five-bar mechanism is
also included in the overall model. The Denavit–Hartenberg
parameters for the manipulator and the parallel mechanism are
given in Table 1. An L-shaped apparatus with a longitudinal
extension of 112.65 mm from the manipulator tool plate and
a vertical offset of 205.32 mm from the longitudinal axis of
the tool plate is connected to the manipulator tool plate in
order to secure the retroreflector of the measurement system
to the robot via a 3-point-contact magnetic fixture. This makes
D6 = 342.65 mm, and D6 = 205.32 mm. With reference
to Fig. 1, it must be noted that, for the five-bar mechanism,
θ̄1 = θ3, θ̄2 = θ2 − θ3, θ̄2 + θ̄3 = π , L̄1 = L̄3 and L̄2 = L2.
The homogeneous transformation matrix between frames 1 and
2 of the five-bar mechanism is described by,

1T 2 = (1T
1̄
)(1̄T

2̄
)(2̄T

3̄
). (1)
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The overall transformation matrix between the base coordinate
frame and the frame fixed to the manipulator end point is
written as

0T 6 = (0T 1)(
1T 2)(

3̄T 3)(
3T 4)(

4T 5)(
5T 6) (2)

where jT j + 1 is the homogeneous transformation matrix
between two consecutive coordinate frames j and j + 1 based
on the Denavit–Hartenberg convention [18].

3. Models of position errors

It has been reported in the literature that the gear train
errors [21], the errors due to structural deformations [10], and
the errors due to the geometric parameters of the model [13]
can be represented by a cyclic function of the joint angles.
Based on this, we assume that the positioning errors change
with the joint positions, i.e., 1p = f (θi ). Another assumption
we make is that the locus of the positioning errors for selected
identification configurations is a piecewise continuous random
function. It follows that the loci of the Cartesian errors of robot
manipulators while following a given trajectory are in the form
of bounded and integrable/summable functions.

With reference to the Theorem of Weierstrass [12,19] for
approximating continuous or discontinuous functions with
polynomials, if a given function of p(θ) is continuous or piece-
wise continuous, bounded and integrable within an interval of
a ≤ θ ≤ b and ε is an arbitrary positive quantity indicating
the convergence tolerance, p(θ) can be approximated with a
polynomial F(θ) within the defined interval such that

|p(θ) − F(θ)| < ε. (3)

F(θ) can be of any type of polynomials including Fourier
polynomials, ordinary polynomials, and other well-known
polynomials of Jacobi, Laguerre and Hermite, and Bessel. In
this study, Fourier and ordinary polynomials are considered for
position error approximation.

It had been demonstrated a long time ago [13] that if p(θ)

has a discontinuity at θ = θ0, the polynomial F(θ) will
converge at θ = θ0 to the arithmetic mean of the values p(θ0−)

and p(θ0+) of the function p(θ) obtained as θ approaches θ0
from the left and from the right, respectively. This means that
the function p(θ) is piece-wise continuous in the interval of
(θ0 − δθ0, θ0 + δθ0), where δθ0 is the infinitesimal amount by
which it is approached to θ0 from the left and from the right.

Drawing the same analogy for an n-jointed manipulator,
the error curves/functions of δx, δy, δz are piece continuous
at the intervals of θi − δθi ≤ θi ≤ θi + δθi for i = 1 . . . n.
This means that the polynomials converge to the expected error
values for every identification configuration of the manipulator
given in joint space. With this in mind, the position error in each
Cartesian direction can be approximated with a trigonometric or
Fourier polynomial of

(δx)i = Ki +

r∑
q=1

[Aq cos(qθi ) + Bq sin(qθi )] (4)

where (δx)i is the positioning error in the x direction due to the
movement of the i th joint only, and θi is the angular position
Fig. 2. Experimental setup.

of the i th joint. For an n-jointed manipulator, Eq. (4) can be
rewritten as

δx =

n∑
i=1

Ki +

r∑
q=1

[
n∑

i=1

Aqi cos(qθi ) + Bqi sin(qθi )

]
(5)

where r is the number of harmonics. Similar expressions can
be written for the position errors of δy, δz. Another alternative
polynomial to approximate the error functions with is to employ
an ordinary polynomial of the kth degree, which can be
expressed as

(δx)i = Qi +

k∑
j=1

(Aiθ
j

i ). (6)

For an n-jointed manipulator, Eq. (6) can be rewritten as

δx =

n∑
i=1

Qi +

k∑
j=1

[
n∑

i=1

(A j iθ
j

i )

]
. (7)

Again, similar expressions can be written for the position errors
of δy, δz.

4. Experimental setup

The key elements of the experimental setup depicted in
Fig. 2 are the laser tracker unit, retroreflector and the robot
manipulator Motoman SK120. The measurement technique
used is based on a laser interferometry based tracker (Leica
LT500 Laser Tracker) with an accuracy of ∓10 ppm (µm/m),
a coordinate repeatability of ∓5 ppm (µm/m) and a distance
resolution of 1.26 µm. After the laser tracker has been
calibrated to measure the manipulator end point with respect
to the manipulator base frame, the manipulator is commanded
to 85 different well-spaced positions within the manipulator
workspace, which have been determined heuristically to
cover the range of motion of all the active joints of the
manipulator. We have determined these positions based on the
implications reported by Driels and Pathre [9], and Borm and
Menq [5] for optimal identification configurations. In order to
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Fig. 3. The errors of the 85 positions of the manipulator. This identification
data was used for generating the error prediction functions.

minimize the effects of measurement noise, the PC based data
measurement and recording system of the laser tracker takes
100 measurements for the same configuration and provides
the average of these measurements as the measurand. The
positional errors of the manipulator for the 85 points are shown
in Fig. 3.

5. Particle Swarm Optimization (PSO) method for error
prediction

Since the measurement system has a very high accu-
racy [20], it is assumed that the errors in the manipulator’s po-
sition are due to the inaccurate geometrical parameters in the
kinematic model described by the entries of the overall trans-
formation matrix in Eq. (2). As we have reported before [1,2],
although the best estimates of the parameters are used in the
kinematic model and more parameters are subjected to the iden-
tification process, there still exist some non-negligible residual
positioning errors which need to be eliminated in order to fur-
ther improve the accuracy of a robotic system. The conventional
way of doing this is to consider the effects of all error sources
in the identification model such that the resulting identification
model is complete in every respect. However, while some of
these sources can lead to reproducible systematic errors, many
of them cause random errors that differ from one application to
another. Therefore, rather than following the conventional way
of improving the accuracy of robot manipulators through com-
plete identification models, we suggest a more generic and prac-
tical technique to estimate the expected position errors using
prediction functions generated by using a Swarm Intelligence
based method: Particle Swarm Optimization.

These error prediction functions can then be used for
estimating the positioning errors without needing further
experimental data. The method is systematic and requires four
steps for implementation:

1. Choose the type of the polynomial such as a Fourier
polynomial, an ordinary polynomial, or any other analytical
function,

2. Decide on the size of the function, i.e., the number of
coefficients,

3. Estimate the numerical values of the coefficients (by using
the PSO method) and also verify the size of the function
using experimental data, and

4. Generate a modified joint space or Cartesian space trajectory
for error correction.

PSO is a method proposed by Kennedy and Eberhart in
1995 [14]. Their algorithm is inspired by observation of animal
foraging behavior, and is based on the metaphor of social
interaction. The individuals, as they search the space, are
influenced by their own previous behavior and by the successes
of their neighbors. The approach to the problem is here similar
to one used in genetic algorithms — the system maintains a
population of potential solutions (called particles). However
in PSO, instead of using genetic operators, the particles “fly”
through the problem space following the current “best” particle
with some stochastic uncertainty.

In this work, we used the basic algorithm [7,14], which
can be outlined in the following way. Each particle i is a
potential solution xi to a problem in n-dimensional space X .
The algorithm is initiated by placing all particles into randomly
selected starting positions and the fittest particle (pbest

i ) is
determined. Each particle maintains a velocity vi as well as its
current position xi in X . At every iteration, the best performing
particle in the neighborhood is found (pbest

g ), and each particle
i adjusts its velocity vi (t + 1) and new position xi (t + 1).
Calculations are done for each dimension d (d = 1, . . . , n) by
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using the following formulas:

vid(t + 1) = vid(t) + c1 × rand( ) × (pbest
id − xid(t))

+ c2 × rand( ) × (pbest
gd − xid(t))

xid(t + 1) = xid(t) + vid(t + 1)

where vid(t) and xid(t) are the current velocity and position
of the particle i , (pbest

id ) is the best position so far, (pbest
gd ) is

the position of the best particle in the neighborhood, rand() is
a function that returns a uniformly distributed random floating
point number ϕ (0 ≤ ϕ ≤ 1) at each call, and c1 = c2 = 2.05
are constants. Calculations are repeated until a termination
criterion is met. In our numerical calculations, we used a
population size of 100. The fitness (evaluation) function was
the RMS (root-mean-square) errors (the PSO algorithm was
implemented here as a minimizer). In our case, we stop the
iterations when the RMS errors of the generated best particle
(over the identification trajectory data, see Fig. 3), drops below
a threshold, or the number of iterations reach 200.

Each dimension of the n-dimensional space represents the
range of possible values a parameter could take. For example,
one of our estimator functions, the first degree polynomials with
constant coefficients has 15 parameters (Eqs. (15)–(17)) that
we attempt to find the best fit values. Therefore, the solution
space that our particles (possible solutions) “fly” through has
15 dimensions in this case.

The major advantage of Particle Swarm Optimization over
other methods such as neural networks, fuzzy interpolation
method [26], and in particular genetic algorithms, is its fast
convergence. The likelihood of overshooting is minimized
because the PSO algorithm in each iteration merely modifies
the position of a potential solution in the search hyperspace
rather than replacing it with a new solution, as in genetic
algorithms. The whole population of PSO moves towards the
optimal area and the particles are likely to converge quickly to
the best solution. Additionally, PSO is simple and robust, with
a small number of parameters that need to be adjusted.

6. Estimation of coefficients of the error prediction
functions

The procedure of finding the numerical values of the
coefficients and the order of the polynomials is to fit a model
expressed by either Eq. (5) or Eq. (7) to the error vector 1pk
associated with m number of measurements (k = 1 . . . m). 1pk
is expressed by

1pk =

δxk
δyk
δzk

 = prk − pnk (8)

where prk is the kth measured (true), pnk is the corresponding
nominal position vector of the kth measurement point, and
δxk , δyk , δzk are the resulting position errors in the x , y,
and z directions, respectively. The 85 measurements have been
used to form the positioning errors and subsequently estimate
the coefficients of the error prediction functions. For a given
manipulator position or a Cartesian path to be followed by
the manipulator, the error functions are used to estimate the
positioning errors in order to generate modified trajectories for
error correction. The error correction procedure is presented in
detail in [2].

6.1. Error prediction with angular data

The First Degree Polynomials (FDP) with constant
coefficients generated by using the PSO method are obtained
as

δx = 0.46 + 0.48θ1 − 1.25θ2 + 2.64θ3 + 0.86θ6 (9)

δy = 1.90 − 0.63θ1 − 1.32θ2 − 1.30θ3 + 0.46θ6 (10)

δz = −0.85 − 0.67θ1 + 1.08θ2 + 2.72θ3 − 1.50θ6. (11)

Similarly, Second Degree Polynomials (SDP) are

δx = −0.03 + 0.22θ1 + 0.33θ2
1 − 1.90θ2 + 1.22θ2

2

+ 3.00θ3 − 1.32θ2
3 + 0.09θ6 + 0.47θ2

6 (12)

δy = −0.28 + 0.47θ1 + 0.65θ2
1 − 0.58θ2 − 0.43θ2

2

− 2.35θ3 + 0.79θ2
3 − 0.34θ6 + 0.28θ2

6 (13)

δz = −2.15 − 0.58θ1 + 0.32θ2
1 + 1.70θ2 − 0.53θ2

2

+ 1.87θ3 + 0.54θ2
3 − 1.84θ6 + 0.42θ2

6 . (14)

Since θ4 = θ5 = 0, they do not appear in Eqs. (9)–(14).

6.2. Error prediction with Cartesian data

The first degree polynomials with constant coefficients
generated by using the PSO method are obtained as

δx = 0.73120 − 0.00130px + 0.00089py − 0.00151pz (15)

δy = −0.41950 − 0.00130px − 0.00126py + 0.00171pz (16)

δz = 3.00000 + 0.00134px − 0.00183py − 0.00146pz . (17)

The second degree polynomials with constant coefficients
generated by using the PSO method are obtained as

δx = 1.34244 − 0.00126px − 0.0000002p2
x + 0.00141py

− 0.0000004p2
y − 0.00108pz − 0.0000003p2

z (18)

δy = −0.41293 − 0.00132px + 0.00000004p2
x − 0.00108py

− 0.0000001p2
y + 0.00201pz − 0.0000002p2

z (19)

δz = 2.06313 + 0.00104px + 0.0000008p2
x − 0.00217py

+ 0.0000004p2
y − 0.00221pz + 0.0000002p2

z . (20)

6.3. Interpretation of results

A quantitative comparison of the performance of the error
prediction functions are presented in Table 2. As one can
expect, the RMS errors of each function over the identification
trajectory are small. A more reliable indicator of the estimation
performance of the functions could be obtained by observing
their RMS errors over the test trajectories (on which the
functions were not trained on).
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Table 2
Overall comparison of the prediction performance of the estimator functions: FDP(CI) (Eqs. (15)–(17)) and FDP (Angular Input (AI)) (Eqs. (9)–(11)) are first degree
polynomials processing input data in Cartesian and angular formats, similarly SDP (Cartesian Input (CI)) (Eqs. (18)–(20)) and SDP(AI) (Eqs. (12)–(14)) are second
degree polynomials, respectively

Root Mean Square (RMS) errors
Identification trajectory Test trajectory 1 Test trajectory 2 Test trajectory 3
X Y Z X Y Z X Y Z X Y Z

Uncompen. error 8.0 7.5 17.9 16.2 19.1 16.6 54.3 5.4 60.9 11.8 19.4 2.0
FDP(CI) 2.3 1.9 3.3 1.9 1.3 2.9 2.6 0.3 4.5 1.8 0.5 1.0
FDP(AI) 2.0 1.5 3.6 4.0 1.0 1.5 4.9 0.7 0.9 2.7 1.0 0.6
SDP(CI) 2.3 1.9 3.6 1.5 1.1 2.4 2.5 0.3 4.2 1.2 0.5 0.6
SDP(AI) 1.8 2.2 3.6 3.5 1.9 1.3 5.2 2.0 0.9 3.0 1.8 1.0
Fig. 4. The error modeling performance of the error prediction functions over the identification trajectory in the y direction. This result is exemplary in the sense
that the modeling performance in the x and z directions are quite similar.
Fig. 5. Test trajectory I: a rectangular path in three-dimensional Cartesian space (left plot), and resulting manipulator joint positions (right plot).
While both Cartesian space and joint space polynomials
describe the positioning errors quite well, as seen in Fig. 4
and in Table 2, please bear in mind that the Cartesian space
polynomials have the advantages of not needing the inverse
kinematics solution, which is tedious and gives multiple
solutions. With reference to the results presented in Fig. 4,
the PSO method is an alternative to the classical least-square
estimation algorithm [2] in determining the coefficients of the
mathematical/polynomial models described in the joint space
and in the Cartesian space.
The accuracy of the error prediction models can further
be improved by dividing the manipulator workspace into sub-
volumes such that each region is precisely represented with
different models/polynomials. For a given Cartesian space
trajectory, the appropriate model or a combination of models,
if the given trajectory falls into two neighboring sub-regions, is
employed to estimate position errors. In principle, the greater
number of models is established to estimate positioning errors
in various regions of the manipulator workspace, the higher
is the success of estimating positioning errors with some
mathematical functions.
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Fig. 6. Test trajectory I: error estimation performance. The first degree polynomial (graphs in the left hand column) and second degree polynomial (graphs in the
right hand column) functions using data in Cartesian coordinates.
It must be noted that, instead of the summation of
polynomials representing contribution of each joint or each
Cartesian direction to the overall Cartesian positioning error,
the multiplication of the same polynomials can be used to
represent Cartesian positioning errors such that the resulting
error model will contain the sum as well as the cross products of
the position of all the joints and Cartesian directions. This issue
will be investigated and reported later in another publication.
We have compared the efficacy of Fourier polynomials and
ordinary constant coefficient polynomials in estimating the
positioning errors in our previous study based on a classical
least-square estimation method [2]. It is found that the Fourier
polynomials estimate the positioning errors more accurately
than the ordinary polynomials. This outcome will not change
with the algorithm employed to estimate the polynomial
coefficients.

7. Verification of error prediction functions

Three test trajectories have been employed to verify the error
estimation method proposed.

7.1. Test trajectory I: Rectangular Cartesian path

This is a rectangle-like Cartesian path in the three-
dimensional space of the experimental manipulator considered.
This path, with respect to the base coordinate system of the
robot, and corresponding joint space trajectory are shown
in Fig. 5. It must be noted that the manipulator end point
is initially at the location of (1100, 800, 600) mm. Each
straight-line part of the path is divided into 50 target points,
i.e., the path consists of 200 target points. The error estimation
performances of the prediction functions over this rectangular
trajectory are shown in Figs. 6 and 7. It must be noted that
the Cartesian space polynomials perform better over the joint
space polynomials in predicting the positioning errors. One
explanation to this finding can be the input motion along
the Cartesian directions (x , y, z trajectories) is given as
already decoupled motions. On the other hand, the movement
of each joint (θ1 · · · θ6) contributes to each of the Cartesian
error components (δxk, δyk, δzk) along the Cartesian directions.
This results in highly coupled Cartesian error components,
which require better approximation functions with many more
coefficients. In our previous study, Fourier polynomials with
double harmonics and fourth order polynomials, which contain
75 coefficients, have remedied this problem successfully [2].

7.2. Test trajectories II and III: Archimedes spirals

To further verify the validity of the PSO based error
modeling technique, two more trajectories were considered.



G. Alıcı et al. / Robotics and Autonomous Systems 54 (2006) 956–966 963
Fig. 7. Test trajectory I: error estimation performance. The first degree polynomial (graphs in the left hand column) and second degree polynomial (graphs in the
right hand column) functions using data in angular coordinates.
Fig. 8. Test trajectory II: Archimedes spiral in X–Y plane (left plot), and resulting manipulator joint positions (right plot).
Each of these Cartesian paths is based on an Archimedes
spiral defined by r = φ in polar coordinates. The Cartesian
coordinates of the spiral are calculated from

x = Wr cos φ (21)

y = Wr sin φ (22)

where φ, the angular position of the radius r from a horizontal
axis, is varied from 0 to 5π with a step size of δφ =

5π
200 , and W
is an enlargement factor, its value is chosen as 20. For the test
trajectory II, it is assumed that the spiral is given in the X–Y
plane, and the z coordinate is changed linearly for 200 target
points. The starting coordinate for this trajectory is chosen to
be at the point (1200, −600, 600) mm. The path, with respect
to the base coordinate system of the robot, and corresponding
joint space trajectory are shown in Fig. 8. For test trajectory
III, the starting coordinate is decided to be at the point (500,



964 G. Alıcı et al. / Robotics and Autonomous Systems 54 (2006) 956–966
Fig. 9. Test trajectory III: Archimedes spiral in Y –Z plane (left plot), and resulting manipulator joint positions (right plot).
Fig. 10. Test trajectory II: error estimation performance. The first degree polynomial (graphs in the left hand column) and second degree polynomial (graphs in the
right hand column) functions using data in Cartesian coordinates.
500, 1400) mm. It is now assumed that the spiral is given in the
Y –Z plane, the x coordinate is changed linearly for 200 target
points. This path, with respect to the base coordinate system of
the robot, and corresponding joint space trajectories are shown
in Fig. 9.

The error estimation performance of the generated
prediction functions over test trajectory II are shown in
Figs. 10 and 11. Similar to the finding of test trajectory I, the
Cartesian space polynomials perform better over the joint space
polynomials in predicting the positioning errors. By employing
better approximation functions such as Fourier polynomials
with multiple harmonics or higher-order ordinary polynomials,
the error estimation based on the data provided in the joint space
can be improved significantly [2].

When the Cartesian position errors estimated through the
models presented above are compared to the experimental
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Fig. 11. Test trajectory II: error estimation performance. The first degree polynomial (graphs in the left hand column) and second degree polynomial (graphs in the
right hand column) functions using data in angular coordinates.
(true) errors, it is obvious that the PSO based error prediction
technique is valid and can be utilized to estimate the
positioning errors of any robot manipulator for the subsequent
kinematic error correction process. One important feature
of this methodology is that it does not require additional
experimental data in order to generate modified joint position
trajectories.

8. Conclusions

In this paper, we present our study that uses the PSO method
to generate functions for predicting expected positioning errors
of a robot manipulator. We have generated and tested various
estimator functions that use input data in angular space and
Cartesian space. Experimental results have been given to
demonstrate that the optimization (estimation) models are
effective in finding the expected positioning errors without
needing further experimental position data for every given
trajectory. An overall prediction performance comparison of
each function over training (identification) trajectory and test
trajectories are given in Table 2. Based on the results, we
can claim that the PSO method is a very efficient optimizer
that demonstrates fast convergence with a relatively small
computational cost, and as such it is a significant step towards
the self-calibration of robot manipulators with minimum
experimental data.
The results given in this research can further be improved
dividing the manipulator workspace into sub-volumes such
that each region is precisely represented with different
models/polynomials. For a given Cartesian space trajectory, the
appropriate model or a combination of models, if the given
trajectory falls into two neighboring sub-regions, is employed
to estimate position errors. This technique can also be extended
to the manipulators with full pose (position and orientation)
data available.
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