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Abstract—In mobile visual sensor networks, relative pose (lo-
cation and orientation) estimation is a prerequisite to accomplish
a wide range of collaborative tasks. In this paper, we present a
distributed, peer-to-peer algorithm for relative pose estimation
in a network of mobile robots equipped with RGB-D cameras
acting as a visual sensor network.

Our algorithm uses the depth information to estimate the
relative pose of a robot when camera sensors mounted on
different robots observe a common scene from different angles
of view. To create the algorithm, we first developed a framework
based on the beam-based sensor model to eliminate the adverse
effects of the situations where two views of a scene each are
partially seen by the sensors. Then, in order to cancel the bias
introduced by the beam-based sensor model, we developed a
scheme that allows the algorithm to symmetrize across the two
views.

We conducted simulations and also implemented the algorithm
on our mobile visual sensor network testbed. Both the simulations
and experimental results indicate that the proposed algorithm is
fast enough for real-time operation and able to maintain a high
estimation accuracy. To our knowledge, it is the first distributed
relative pose estimation algorithm that uses the depth information
captured by multiple RGB-D cameras.

I. INTRODUCTION

The latest advances in video technology, inexpensive camera
sensors, and distributed processing allow the wide utilization
of image sensors. It has resulted in a new paradigm– vi-
sual sensor network [1]. Visual sensor networks observe and
process image/video data give rich information on situation
awareness. Replacing the conventional RGB cameras with
RGB-D camera sensors (e.g., Microsoft Kinect [2]) which can
capture color image along with per-pixel depth information,
visual sensor networks promise a wider range of the innovative
applications, such as 3D reconstruction, object localization,
etc.

In this paper, we consider mobile visual sensor networks
of robots equipped with RGB-D camera sensors to observe
the environment. We treat each robot as a mobile RGB-D
sensor. The goal is to enable each mobile RGB-D sensor to
obtain the precise location and orientation information of other
sensors. In order to achieve this goal, we present a peer-to-
peer, distributed depth image registration algorithm estimating
the relative pose between multiple sensors when two or more
sensors observe a common scene from different angles.

Many research works have been proposed to determine the
pose of a single RGB-D sensor in the last few years. The most

of the pose estimation methods operate in a frame-to-frame
tracking manner via estimating the motion between every two
consecutive frames. The interframe motion, between a pair
of RGB-D images, is normally estimated through the explicit
matching of surface geometry. These methods can be classified
into three main categories: (1) Iterative Closest Point (ICP)
variants ([3], [4], [5], [6]), (2) feature-based registrations ([7],
[8]), and (3) hybrid approaches ([9], [10], [11], [12], [13]).

The ICP variants approach the registration problem by
iteratively minimizing a cost function whose error metrics
are defined based on the point-to-point, point-to-plane or
other geometrical relationships. ICP [14] was made popular
following its successful application in the registration of highly
accurate range data from laser rangefinders with a wide field-
of-view (FoV). However, due to the narrow FoV of RGB-D
sensors, occlusion and limited overlapping region between two
views of a scene can easily lead to the failure of the ICP
variants.

Unlike ICP variants that match the randomly sampled points
on two consecutive depth frames, the feature based methods
first detect and match texture feature points on consecutive
color frames. Then the corresponding depth information of
the matched feature points are used to determine the motion
parameters. As the feature detection requires sufficient visual
contents and consistent illumination in the scene, these ap-
proaches have limitations in many situations, such as the dark
environments.

In order to improve the estimation accuracy, the hybrid ap-
proaches combine ICP variants and feature-based registration
algorithms together. In this kind of approaches, the feature
registration is usually adopted to provide a rough estimation
of the motion parameters. Then, ICP variants are used to
refine the result. These approaches inherit the limitations of
ICP and feature registration. Furthermore, these approaches
are computationally expensive and require GPU to operate in
real time.

All of these approaches focus on estimating the egomo-
tion of a single RGB-D sensor. The disadvantages of these
egomotion estimation algorithms prevent them from being
directly applied to estimate the relative pose between multiple
computationally constrained sensors.

Our proposed novel algorithm fills the gap existing in
the area of relative pose estimation between multiple RGB-



D sensors. In this algorithm, a maximum likelihood frame-
work based on beam-based sensor model [15] is devised
and incorporated with ICP framework to enhance the limited
performance of ICP variants in relative pose estimation. The
algorithm was implemented and tested both on a laptop and
our visual senor network testbed comprised of mobile RGB-
D sensors. Extensive experiments using existing datasets and
real world data are conducted to examine the performance of
the proposed algorithm under different 3D scenes.

The rest of the paper is organized as follows. The problem
and task are presented in Section II. Section III discusses
our proposed work and algorithm for relative pose estimation
in details. Experimental setup and summarize of our key
findings are described in Section IV. The final section draws
the conclusion and identifies the directions of future work.

II. PROBLEM STATEMENT

As an RGB-D sensor can provide a continuous measurement
of the 3D structure within the environment, the relative pose
between two RGB-D sensors can be estimated through explicit
matching of surface geometry. The relative pose between two
sensors a, b can be represented by a transformation matrix,
Mab, in SE(3),

Mab =

[
R t

0 0 0 1

]
, (1)

where R is a 3 × 3 matrix indicating the relative orientation,
and t is a 3× 1 vector representing the relative position. The
subscript ab indicates the sensor a’s pose relative to sensor b’s
pose.

Let Za and Zb denote a pair of depth images of the
same scene captured by two separated RGB-D sensors (see
Fig. 1). For a depth image, Za, is made up of N pixels where
each pixel contains the corresponding depth information. After
calibrating the RGB-D sensor, the depth pixel, pk

a, which
contains the range information and the pixel coordinates in
frame Za, can find its relationship to a corresponding world
point. It can be expressed as

pk
a ≡ 1/zka [x

k
a, y

k
a , z

k
a , 1]

T = [uka, v
k
a , 1, q

k
a ]

T

= [
ika − ic,a
fx,a

,
jka − jc,a
fy,a

, 1, 1/zka ]
T . (2)

(xka, y
k
a , z

k
a) denotes the corresponding point in Euclidean

space represented using homogeneous coordinates. (ika, j
k
a)

denotes the pixel coordinates in the image, (ic,a,jc,a) is the
principal point offset and (fx,a,fy,a) is the focal length of
the RGB-D sensor a. It is more convenient to solve for pose
using this formulation because (u, v) are a linear function of
pixel position. And it preserves the linear relationship with
the normalized disparity values and avoids conversion to 3D
Euclidean space which has non homogeneous and anisotropic
noise characteristics. With the accurate information of the
transformation matrix, each pixel with coordinates (ika, j

k
a)

in depth image Za can find its corresponding pixel in Zb at

p1 p2

p3

Za Zb

Fig. 1. A scene with occlusion: Za and Zb denote a pair of depth images.
p3 is a world point which can be seen by both sensors a and b. p1 and p2
are world points which can only be seen by either sensor a or sensor b.

(ikb , j
k
b ), which represents the same world point, by applying

the rigid body transformation as

[
ik − ic
fx

,
jk − jc
fy

, 1, 1/zk]Tb = Mab[
ik − ic
fx

,
jk − jc
fy

, 1, 1/zk]Ta .

(3)

Conversely, if we can establish the correspondences between
two depth images and put the corresponding pixel pairs in
Eq. 3, the transformation matrix denoting the relative pose
between two RGB-D sensors can be determined. And all the
pixels in Za can be warped to generate a virtual depth image
which matches Zb.

However, when there is occlusion in the scene (see Fig. 1),
some world points may only be seen by sensor a and cannot
be seen by sensor b. Therefore, the pixels representing these
points in Za are not able to find their correct corresponding
pixels in Zb. If the incorrect correspondences are established,
an virtual depth image which cannot match Zb will be gener-
ated. And a wrong transformation matrix is provided according
to Eq. 3.

III. PROPOSED WORK AND ALGORITHM

In the proposed work, a maximum likelihood framework is
presented to deal with the effect of occlusion. The proposed
algorithm is inspired by the working principle of the beam-
based sensor model [15] and is incorporated into our ICP
solver as a robust weighting function. We will first review
the beam-based sensor model which distinguishes the points
on occlusion from the scene using a maximum likelihood
framework. And then we present an approach for eliminating
the bias introduced by beam-based sensor model.
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Fig. 2. Piecewise function used in the beam model.

A. Beam-based Sensor Model
Let Da and Db denote the depth measurements returned by

the depth sensor a and b. Each set of the depth measurements
is made up of N pixel elements where each pixel in the
image contains the corresponding depth value, zka , such that
Da = {z1a, ..., zNa }. In this model, the depth information in Db

is treated as the expected surface, and the depth information
in Da is treated as the measurements. The relative motion
which best aligns the measurements to the expected surface,
described by a 6DoF motion matrix M, can be estimated by
formulating this as a maximum likelihood problem as,

M = argmax
M̃

p(Da|Db, M̃). (4)

The conditional probability p(Da|Db, M̃) can be approxi-
mated by the product of the individual measurement probabil-
ities as

p(Da|Db, M̃) =
∏
k

p(zka |Db, M̃), (5)

where p(zka |Db, M̃) can be modeled according to the beam
model which describes the probability distribution of a mea-
surement zka to lie in front (occluding surface), close to, or
beyond the surface given the expected measurements in the
depth measurements Db and the motion matrix M. The beam
model is illustrated in Fig. 2 and this can be represented using
a piecewise function. There are three parts in this piecewise
function:
• Case 1: when zka � zkb : describes the probability of a

depth measurement zka to be an occluded surface. This is
described by a uniformly distributed function.

• Case 2: when zka ≈ zkb : describes the probability of a
depth measurement zka to be closely aligned to its ex-
pected value. This is described by a Gaussian distribution
centered at 0 with standard deviation σz for zka ≈ zkb

• Case 3: when zka � zkb : describes the probability of a
depth measurement zka to lie beyond its expected value.
This is described by a uniformly distributed function with
very low probability.

The beam model when applied to motion estimation within
a maximum likelihood framework explicitly deals with oc-
clusion. However, as the piecewise model used to distinguish

various points is unsymmetrical, the beam model creates a
bias. It tends to push the sample points away from the camera
that senses the surface so that they are more likely to lie behind
it, which would produce less robust and inaccurate results.

B. Bidirectional Beam Model

To remove this bias introduced by bean model, we propose
to use the beam model bidirectionally, and we name it bidi-
rectional beam model. In a maximum likelihood framework,
this can be formulated as

Mab = argmax
M̃

[p(Za|Zb, M̃)p(Zb|Za, M̃
−1

)]. (6)

Za, Zb are the depth images captured by sensor a and sensor
b respectively. Similar to the unidirectional beam model,
we can assume the conditional independence for each depth
measurement such that

p(Za|Zb, M̃) =
∏
k

p(zka |Zb, M̃), (7)

p(Zb|Za, M̃
−1

) =
∏
k

p(zkb |Za, M̃
−1

). (8)

According to the piecewise function of beam model, an occlu-
sion determined by p(Za|Zb, M̃) is treated as the measurement
beyond the expected surface by p(Zb|Za, M̃

−1
). When the

first probability component is maximized as points are being
pushed to the front of the reference surface, the second
probability component will become smaller, which can prevent
the transformation matrix Mab being incorrectly estimated. Eq.
6 can only be maximized when the balance between the two
probability components is reached. Eq. 6, can be converted
into negative log likelihoods,

Mab = argmin
M̃

∑
k

[log p(zka |Zb, M̃) + log p(zkb |Za, M̃
−1

)].

(9)

To estimate the 6DoF motion that best aligns a pair of depth
images in this form would require partial derivatives of M̃
with respect to the 6 motion parameters to be derived. This
is not a trivial task and even if this is achievable, it is
not computationally efficient. This forms the basis of our
motivation to incorporate the bidirectional beam model as a
robust weighting function into the ICP algorithm.

C. Motion Estimation Using ICP with Bidirectional Beam
Model

We now describe how the bidirectional beam model is
incorporated into the ICP algorithm. We approach this problem
by using an asymmetric weighting function in the least squares
component of our ICP solver. As reported in [16], different
weighting functions lead to various probability distributions.
For a weighting function w(x), the probability density function
is expressed as,

p(x) =
1

k
exp

−λ x∫
0

x′w(x′)dx′

 , (10)



in which k =
∫ +∞
−∞ exp

(
−λ

x∫
0

x′w(x′)dx′
)

is the normal-

ization factor. To achieve the probabilistic model for beam
model in Fig. 2, we find a piecewise weighting function as
follows,

w(z) =

{
c/[c+ (z∗ − z)] if z ≤ z∗
c/[c+ (z∗ − z)2] if z > z∗

, (11)

where z∗ is the expected depth value, and z is the measured
value. c is the mean of deviation between expected depth
values and measured depth values.

As shown in Fig. 2, the likelihood of one correspondence
is directly related to the residual distance between the mea-
surement and the expected surface. Therefore, the maximum
likelihood framework of the bidirectional beam model can
be converted and solved as a novel least squares approach
which operates in a bidirectional way with the weighting func-
tion presented above. Suppose that correspondences between
N = Na +Nb pairs of points from two depth images Za and
Zb are established, we can then estimate the transformation
matrix Mab by minimizing

C =
Na∑
k=1

[wk,a(M̃pk
a − pk∗

b ) · ~nk,b]2

+

Nb∑
k=1

[wk,b(M̃
−1

pk
b − pk∗

a ) · ~nk,a]2, (12)

in which pk
a and pk

b are the sampled points on different
depth images, pk∗

b and pk∗
a are their corresponding points re-

spectively. ~nk,b,~nk,a are the surface normals at corresponding
points pk∗

b and pk∗
a respectively. wk,a and wk,b are weight

parameters for various correspondences established in different
directions. The cost function in Eq. 12 includes two parts: (a)
the sum of squared distances in the forward direction from
depth images Za to Zb, (b) the sum of square distance in the
backward direction from Zb to Za. Eq. 12 can be minimized by
reweighting the least squares operation in an ICP framework.
Our algorithm is outlined in Algorithm 1.

In each iteration of this coarse-to-fine algorithm, the cor-
responding pixel pairs between two depth images are estab-
lished. And the transformation matrix which can warp the pix-
els from one image to their corresponding pixels’ coordinates
is updated. Therefore, the pixels in one depth image can be
warped to generate a virtual depth image matching the other
depth image iteratively. Once the algorithm converges, the
registration is accomplished and the transformation matrix de-
scribing the relative pose between two sensors is determined.

D. Distributing the Algorithm to Two RGB-D Sensors

In reality each sensor only has its own captured depth
frames. In order to accomplish the centralized working prin-
ciple of the algorithm described above, we distribute the tasks
to two sensors.

Considering the limited bandwidth of the network, instead
of transmitting a complete depth image from one sensor to
another, each sensor only transmits a number of sampled

Algorithm 1 The concept of ICP with bidirectional beam
model (centralized)

1: Capture a depth frame, Za, on sensor a, and capture a
depth frame, Zb, on sensor b.

2: Initialize the transformation matrix, Mab, as the identity
transformation.

3: procedure REPEAT UNTIL CONVERGENCE
4: Update depth frame Za according to transformation

matrix.
5: Randomly sample Na points from Za to form set Pa,

Pa = {pk
a ∈ Za, k = 1, . . . , Na},

6: Randomly sample Nb points from Zb to form set Pb,
Pb = {pk

b ∈ Zb, k = 1, . . . , Nb}.
7: Find the corresponding point set, P ∗b , of Pa in Zb,

P ∗b = {pk∗
b ∈ Zb, k = 1, . . . , Na};

Find the corresponding point set, P ∗a , of Pb in Za,
P ∗a = {pk∗

a ∈ Za, k = 1, . . . , Nb}.
. The correspondences are established using

the project and walk method with a neighborhood size of
3x3 based on the nearest neighbor criteria

8: Apply the weight function in Eq. 11 bidirectionally,
Pa 7→ P ∗b , Pb 7→ P ∗a

9: Compute and update transformation matrix based on
current bidirectionally weighted correspondences

10: end procedure

points to the other sensor. For example, at each iteration,
after sensor b receives the sampled point set, Pa, from sensor
a, sensor b will find the corresponding point set, P ∗b , on its
captured depth frame Zb. The first component in Eq. 12 will
be derived. The information representing the first component
will be sent with the sampled point set, Pb, from sensor b
to sensor a. At sensor a, Pb’s corresponding point set, P ∗a ,
will be determined. And the second component in Eq. 12 will
be derived. Thereby, sensor a will acquire the information of
both first and second component in Eq. 12. And the motion
parameters can be determined.

These procedures will be performed in each iteration. The
transformation matrix describing the relative pose between
two sensors will be obtained by sensor a until the algorithm
converges. And sensor a will send the inverse transforma-
tion matrix to sensor b. Then both sensors will obtain the
information of the other sensor’s location and orientation. The
distributed process is illustrated in Fig. 3.

IV. EXPERIMENT RESULTS

In order to justify the proposed algorithm towards relative
pose estimation between multiple RGB-D sensors, we have
conducted extensive tests to evaluate the performance. We
have implemented our algorithm (ICP-BD) in C++ using the
libCVD and OpenKinect libraries on a laptop with an Intel i7
M620 processor and our mobile visual sensor network testbed
to evaluate its fast-processing as well as robust performance.
To verify the superiority of our algorithm in relative pose
estimation, we compared it with the benchmark ICP algorithm



sensor a sensor b

iteration
1

iteration
2

Fig. 3. Distributing the tasks to two mobile sensors.

[14] and ICP in inverse depth coordinates (ICP-IVD) [5] using
point-to-plane error metric.

A. Dataset Simulations

This set of experiments is conducted on the laptop by using
the datasets Cabinet, Large cabinet, Plant, and Structure-
no-texture provided in [17]. Each dataset is a sequence of
Kinect video frames capturing one scene from different angles
of view. In order to simulate situations including different
amounts of occlusion between two sensors’ views, we ex-
tracted 4 new sequences from each dataset by taking one
frame out of every 5, 10, 20, and 30 frames. For each trial we
treat two consecutive frames in the new sequence as the depth
images captured by two separated sensors. We deem a trial
to be successful if the error between the estimated pose and
ground truth pose is within 10 centimeters in translation. The
percentages of successful relative pose estimation for different
algorithms are presented in Table I. Table I clearly indicates
that
• As the frame is sampled at an incremental interval, each

algorithm’s successful percentage decreases. When frame
interval is greater than 10, more occlusion and differences
exist between two sensors’ views. As proposed ICP-
BD reports higher successful estimation percentages, it
outperforms other algorithms in environments with heavy
occlusion.

• When the frame interval is 5, three algorithms have
similar performances. Therefore, all of them can be
used to handle small motion in the presence with minus
occlusion.

• When the frame interval is 30, the occlusion between
two views is too heavy and the two consecutive depth
images are largely different from each other. As a result
of this, the performance of three algorithms drops down
significantly.

TABLE I
PERCENTAGE OF SUCCESSFUL RELATIVE POSE ESTIMATION IN VARIOUS

DATASETS

Dataset Frame
interval ICP ICP-IVD ICP-BD

Cabinet

5 1.00 1.00 1.00
10 0.98 1.00 1.00
20 0.81 0.90 0.98
30 0.43 0.43 0.55

Large
cabinet

5 0.99 0.99 0.99
10 0.89 0.92 0.95
20 0.61 0.69 0.81
30 0.22 0.31 0.37

Plant

5 1.00 0.99 1.00
10 0.77 0.82 0.91
20 0.59 0.75 0.82
30 0.31 0.40 0.47

Structure
no texture

5 1.00 1.00 1.00
10 0.94 0.97 0.97
20 0.71 0.81 0.90
30 0.38 0.40 0.53

An intuitive example of successful trail using ICP-BD in
dataset ”Cabinet” is illustrated in Fig. 4. Furthermore, through

Fig. 4. A successful trail in dataset ”Cabinet” with a frame interval at 20. The
captured depth images and their corresponding color images are displayed on
left and right side. The depth image in the middle is warped from the left
depth image to register to the right depth image.

adjusting the number of sample points on the depth frames, our
proposed algorithm can process up to 30Hz while still hold
the estimation accuracy on a standard laptop without GPU
implementation, which is faster than the other ICP variants.

B. Turntable Simulations

In order to control the occlusion ratio in two sensors’
views precisely, we generated our own datasets to evaluate the
performance of our proposed algorithm for heavily occluded
situations. A turntable was used to obtain ground truth. Several
objects were placed on the center of the turntable, and the
images were captured by a Kinect that was mounted on
a tripod. We generated our dataset from the two scenes
illustrated in Fig. 5 and in each scene the turntable was rotated
clockwise incrementally at an interval of 5◦ up to 90◦.

The main difference of this simulation in comparison to
the previous set is that the ground truth is known exactly at
every 5◦ interval which is precisely controlled. Whereas in the
previous simulation, the motion between two depth images
is quite random. And in this simulation, we can determine
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Fig. 5. Experimental setup and two scenes with different occlusion.

when the algorithms fail to provide the accurate estimation.
The performance of the different algorithms is evaluated based
on the rotational and translational RMS error, as illustrated in
Fig. 6.
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Fig. 6. Rotational RMSE and translational RMSE for variant algorithms.
Turntable rotation indicates turntable rotation interval between two frames in
degrees.

The graphs in Fig. 6 clearly indicate that
• When angular interval is greater than 15 degrees, more

occlusion exist between two sensors’ views. And the pro-
posed algorithm outperforms other variants as it reports
much lower translational and rotational RMSE.

• Standard ICP has the poorest performance across the
experiments. ICP-IVD can provide similar accuracy in
pose estimation before it diverges. However, as the scene
becomes more occluded as the turntable is being rotated,
ICP-IVD would fail to converge sooner than our proposed
method.

• For small angular interval, the relative accuracy between
the three algorithms are small. Therefore, all of them

can be used to handle small motion in the presence with
minus occlusion.

C. Mobile Visual Sensor Network Testbed Experiments

In this set of the experiments, we implemented the proposed
algorithm on our mobile visual sensor network testbed. This
testbed consists of multiple mobile RGB-D sensors named
“eyeBug” (see Fig. 7) [18].

BeagleBoard-xM

Kinect

Fig. 7. eyeBug– the mobile RGB-D sensor in our mobile visual sensor
network platform.

On each mobile sensor, a Microsoft Kinect is mounted at
the center and a BeagleBoard-xM single-board computer is
built at the rear. Equipped with an Atmel Cortex processor,
a USB hub, and a HDMI video output, the BeagleBoard-xM
can run an ARM-processor-optimized Linux kernel mounted
on a micro-SD card and act as if it were a desktop computer.
Despite the BeagleBoard only running at a maximum 800
MHz processor cycles, it can easily interface with both the
Kinect sensor and the WiFi dongle through its USB ports,
facilitating the streaming system. In this experiment, instead
of using the whole network, we only used two mobile sensors
to test the algorithm.

We generated two different scenes illustrated in Fig. 8.
In the following experiments, we performed 50 trails per
scene. And in each trail, we placed two eyeBugs at different
locations while kept them looking at the scene from different
angles. Two eyeBugs are able to communicate with each
other directly through wireless channel. And the proposed
algorithm was implemented on each eyeBug and worked in
a distributed manner. As we did not have the precise ground
truth information of each eyeBug’s location and orientation
in this set of experiments, we programed the first eyeBug
to keep stable and programed the second eyeBug to move
to the first eyeBug’s position after it obtained the relative
pose information. We deem a trail to be successful if the
second eyeBug can move to the place within the range of
10 centimeters to first eyeBug’s position.

In Fig. 9 we present the frequency of successful trail that
one eyeBug moves to the other eyeBug’s position. When
the amount of occlusion and clutters increases, our algorithm
performs 10% to 16% better than ICP-IVD and far more
better than the benchmark ICP. Due to the computational



Fig. 8. Two scenes with varying amount of occlusions and clutters.
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constraint of our mobile RGB-D sensor, the algorithm requires
an average 1.21 second to provide the relative pose estimation.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose the first relative pose estimation
algorithm for multiple RGB-D sensors. The proposed approach
can operate in real time on depth images captured by the
Microsoft Kinect. And it has been implemented on a mobile
visual sensor network to enable the sensor to obtain the
location and orientation information of the other sensor in the
network.

The main contribution of this paper is the development of
a novel maximum likelihood model named bidirectional beam
model which can deal with the effect of occlusion in the views
of different sensors. And we incorporated this model into the
ICP framework in order to determine the motion parameters.
Different from the existing works aligning 3D point clouds to
estimation inter-frame motion, the proposed algorithm directly
registers two depth images. We conducted three sets of experi-
ments to evaluate the accuracy and robustness of our proposed
algorithm in environments with various amount of occlusion.
Results of the experiments indicate that the proposed ICP with
bidirectional beam model is robust and accurate in different
environments for relative pose estimation.

Further research will concentrate on enhancing the scalabil-
ity of the algorithm to estimate the relative pose among a large
number of RGB-D sensors. And this algorithm will be used
as the initialization for Cooperative Localization (CL) in the
near future. Moreover, our algorithm is constrained to operate
in static scenes and it is not able to deal with dynamic objects
in the environment. As future work, we intend to address such

limitation as well.
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