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Abstract—An algorithm for accurately estimating camera over-
lap in a distributed smart camera network with minimal data
transmission was developed and evaluated, as a preliminary step
towards three-dimensional calibration. The algorithm incorpo-
rates SURF (Speeded-Up Robust Features) to find matching
features in live, low-quality images provided by web cameras. To
reduce transmitted data, the number of extracted features was
reduced, and feature descriptors were compressed using singular
value decomposition. Reliable overlap estimation accurate to
within 9 pixels was achieved while sending just 30 kilobytes per
captured image.

I. I NTRODUCTION

As the cost of powerful embedded processors continues to
drop, distributed smart camera networks are becoming more
and more viable options in applications such as security and
monitoring. With the ability to perform many user-defined
tasks such as object recognition and tracking, intrusion de-
tection and localization, smart cameras are likely to replace
many older systems which rely on human monitoring of all
video information.

The benefits ofdistributed smart camera networks over cen-
tralized smart monitoring systems are many - no costly central
processors, less communication infrastructure and the ability
to scale to practically any size. There are some challenges yet
to be overcome in the development of smart camera networks,
one of which is calibration. This involves determining the
location and orientation of all cameras within the network,
which is useful in tasks such as 3D reconstruction, and object
localization and tracking. Ideally, the calibration process would
be completely automatic and performed in minimal time.

A. Camera Calibration and SURF

To perform automatic calibration, a robust method of find-
ing geometric relationships between the cameras’ images is
needed. A common way to perform stereo camera calibration
is by matching common objects in each camera’s field of
view usingfeature detectors and descriptors. This method can
also be used to calibrate multi-camera networks. One recently
developed scale and rotation invariant feature detector and
descriptor is SURF (short for “Speeded-Up Robust Features”)
[3]. It has proven to be as effective as similar well-known
descriptors such as SIFT [15], while being much more com-
putationally efficient [2], [3].

Computational efficiency is of particular importance in
distributed smart camera networks, which typically employ
low-power embedded processors. In addition, transmitted data
must be kept to a minimum to conserve power and network
availability. This means that detected feature data must be
reduced and/or compressed before transmitting between cam-
eras, while still maintaining enough information to accurately
match image features.

In this paper, the effectiveness of an algorithm incorporating
the SURF feature detector and descriptor in determining
camera overlap is tested under varying levels of data reduction
and compression. Live, low-quality images are provided by
web cameras, to test the practicality of the algorithm when
using low-cost image sensors. Camera overlap is found as a
result of calculating image homographies, which can be used
as a preliminary step in the camera calibration process. The
algorithm is tested using two cameras, however is designed to
work with a many-camera network. Analysis of such a network
is left for future research.

This article is presented in the following order. Section II
covers a brief review of the current literature on distributed
smart camera calibration techniques. Section III provides
background theory on camera overlap calculation using ho-
mographies, the SURF descriptor and its implementation in
software. The complete camera overlap detection algorithm
and its implementation is subsequently presented in section
IV, with results following in section V. Section VI concludes
the report, and includes suggestions of future work.

II. RELATED WORK

Many methods are available to obtain camera calibration.
A calibration object such as a flashing light, or an easily
distinguishable object, when moved within view of multiple
cameras can reveal camera positions via triangulation. This is
done in [14], [17], [19].

Other sensor data such as GPS, laser ranging or wireless
network signal strength are also used, and would be required
in sparse networks of cameras whose fields of view do not
overlap. This approach, calledsensor fusion, is considered in
[1], [16], [18], [20]. In this paper, however, a dense network
of cameras with at least some overlapping fields of view is
hypothesized.



Extra sensors and/or the use of a calibration object moved
within the field of view of all cameras within the network aid
in obtaining an accurate calibration, however they increase the
complexity of the task in terms of equipment and potentially
cost. Performing the calibration task using image data alone
is a quick and cheap method, however relies on robust image
processing techniques.

Devarajan et al. [6], [8], [9] developed a robust calibration
method using image data alone. This was done by matching
SIFT features of overlapping static images taken with a
handheld digital camera. The SURF [3] feature detector used
in this paper is able to perform the same task with similar
results, using less CPU resources. Also, live webcam images
are used instead of high-quality still images, due to their low
cost and ease of interface via USB.

Chandrasekhar et al. [5] examined the effect of compressing
SURF and SIFT descriptors using transform coding. They
achieved near-perfect image matching performance at 16x re-
duction in SURF data size. Their focus was on image retrieval
rather than camera calibration, however their approach would
be ideal for a wireless camera network calibration task in
which minimal data was to be transmitted across the network.

III. B ACKGROUND THEORY

A. Calculating Image Overlap with Homographies

Camera overlap can be calculated by determining the ho-
mography between images of a planar surface viewed by two
cameras.

A homography, otherwise known as aplanar projective
transformation [12], describes the relationship between two-
dimensional image points viewed from different perspectives.
The relationship between points on one planeP and a second
planeP ′ is defined by a non-singular3 × 3 matrix H (the
homography matrix) such that:

x′ = Hx (1)

where x and x′ are the point coordinates on the first and
second plane.

Equation 1 was used in this paper to project the outline
of one camera’s field of view onto the other camera’s image,
thus providing an easy visual indicator of camera overlap. An
obvious limitation of using homographies is that enough fea-
tures on a planar surface must be detected for the homography
calculation to work. This limits the number of scenes that this
algorithm can be used on.

B. SURF

This section provides an outline of the SURF descriptor,
which is useful in understanding the compression stage of the
algorithm. For a full description of SURF, see [3]. The SURF
feature descriptor is based on the proven method of mapping
local contrast gradient orientation. The gradient in each grid
segment is represented by the sums of first order Haar wavelet
responses in thex andy directions.

A number of grid sizes can be used; larger grids increase
computation time while increasing the distinctiveness of the

Fig. 1. The standard SURF-64 descriptor. The4 × 4 grid is placed over
each detected feature. Each grid element contains four sub-elements in which
the contrast gradient vector is calculated. These vectors are then summed to
produce the average gradient information for the grid element:

∑

dx,
∑

|dx|,
∑

dy and
∑

|dy|

descriptor. Bay et al. [3] found the best tradeoff in the
4× 4 grid. Each grid element contains a four element vector
describing the intensity pattern as shown in Figure 1:

∑

dx,
∑

|dx|,
∑

dy,
∑

|dy| =
∑

x
(2)

These vectors are stored sequentially in a larger vector describ-
ing the entire grid, resulting in a 64 dimensional descriptor
vector for each feature (referred to as SURF-64):
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]

= dx (3)

To increase distinctiveness of the descriptors, an “extended”
descriptor is available, which computes the sums ofdx and
|dx| separately fordy < 0 anddy ≥ 0, and similarly separates
dy and |dy|. This doubles the size of the descriptor and takes
only slightly longer to compute, but increases matching time
significantly due to its larger size. The extended descriptor for
the4×4 grid, called SURF-128, was found in [3] to have the
highest accuracy amongst all SURF descriptors.

IV. D ESCRIPTION OFALGORITHM

The algorithm was developed for two cameras feeding
images to a single computer, with the future intention of
developing a many-camera network. The image processing
functions used were provided in the Open Source Computer
Vision (OpenCV) library.

The process followed for each frame captured by the first
camera is described below.

A. Feature Extraction and Compression

Features and descriptors from camera one’s images are
extracted using the SURF feature extractor function provided
in the OpenCV library.

Reducing the number of features allows faster computation
in the descriptor extraction, compression, decompressionand
feature matching stages of the algorithm.

Spacing of feature points was not dealt with. Cheng et al.
[6] used k-d trees to spread detected features, however this
was overlooked for this paper due to time constraints.



Fig. 2. Each camera’s field of view is outlined as a dotted line.The algorithm
determines the portion of camera one’s field of view that can be seen by
camera two, represented by the solid line. Camera one’s field ofview is
described by four corner coordinates in camera two’s image plane - (x0, y0)
- (x3, y3)

To compress the calculated feature descriptors, descriptors
dx are arranged into a matrixD:

[

d1 d2 · · · dN

]T
= D (4)

which results in anN × 64 (for SURF-64) orN × 128
(for SURF-128) matrix, whereN is the number of features.
Singular value decomposition (SVD) is performed onD to
find its principal components, of which an adjustable amount
can be sent over a network connection. The approximated
descriptor matrixD′ at the receiving end is then constructed by
back-substituting the SVD matrices. The level of compression
is defined as the inverse of the number of principle components
sent:

compression(percent)= 100× (q −Npca)/q (5)

where q is the descriptor size andNpca is the number of
principle components.

B. Feature Matching, Homography Calculation and Camera
Overlap Estimation

Matching features are found using a simple naive nearest
neighbors algorithm, which compares every descriptor against
one another.

Calculation of the homography is done using Random
Sample Consensus (RANSAC) [10] on the matching features,
then using a non-linear algorithm to minimize reprojection
error, as described in Chapter 4 of [12].

Figure 2 shows an example setup of the two cameras used
for testing. The calculated homography is used to project
the corners of camera one’s field of view onto camera two’s
images, using equation (1).

Due to camera noise and erroneous feature matches, corner
estimates vary from frame to frame. The magnitude of this
variation increases as less features are extracted and descrip-
tors are compressed. To suppress these errors, the corner esti-
mates can be averaged over a number of frames. However, the

Fig. 3. Process followed for each frame captured by the cameras. Note
that only the transmitted descriptors need to be compressed, in this case
camera one’s descriptors. Matching is performed at camera two.For testing
of the algorithm, the compression and matching processes were performed by
a single computer.

homography calculation becomes less stable as the supplied
data is reduced, and occasionally produces very large errors
that dominate the average. To mitigate these effects, RANSAC
is used on the corner estimates to reject such outliers.

C. Accuracy Measurements

The accuracy of the projected field of view was measured
by obtaining an estimate of the correct corners using large
numbers of features, no compression, and RANSAC of corner
estimates over many frames. These corners can then be com-
pared with those calculated from smaller data sets. The initial
estimate of the correct corners must be checked manually
to ensure that they are reasonable. Although these “correct”
corners will not be exactly correct, the aim was to compare the
performance as data is limited, not to test the general accuracy
of SURF.

The same method was used by Shafique et al. in [21],
however they do not mention how they obtain the “true”
homography. They call the error between the estimate and
true homographytransfer error e:

e =
1

n

n
∑

i

‖H∗pi −Hpi‖ (6)



whereH∗ is the estimated homography,H the true homog-
raphy andpi are the points (corners in this case) in camera
one’s field of view.

D. Implementation

Testing of the algorithm was done using using a laptop
computer with a 1.6 GHz Intel Pentium M processor, and two
attached Logitech Quickcam E3500 web cameras. A linux OS
(Ubuntu) was used, and the computer vision functions were
provided in the OpenCV library.

The scenes used for testing comprised mainly of walls
with distinctive patterns (posters/signs). Fourteen scenes in
total were used for testing. For each scene, ten different
compression levels as well as ten different extracted feature
counts were used for each descriptor size.

The number of features was varied with a fixed compression
level of 21.88%, since it was realized early on that slight com-
pression of the descriptors seemed to produce more reliable
results. The number of extracted features was set at 600 for
the compression tests, to allow a reasonable chance of there
being matching features present.

V. RESULTS

The data shown in these results includes the corner estimates
using simple averaging separate to the corner estimates using
RANSAC.

The graphs of averaged corner estimates provide an insight
into the scale of errors produced by SURF and the homog-
raphy calculation as the features are reduced and descriptors
compressed. As discussed in IV-B simple averaging produces
much less accurate results than RANSAC. The graphs of errors
using RANSAC show the results of the entire algorithm.

A. Effect of Descriptor Compression

As can be seen in Figure 5, average error is generally low
until compression levels rise above 50%. Very large errors can
occur even at low compression levels as discussed in IV-B, as
shown by the large peak at 30% compression of the SURF-128
descriptor.

Ignoring the large peak of the SURF-128 descriptor, average
error is slightly larger at zero compression compared the range
of 10-50%. This is likely due to the use of SVD to compress
the descriptors. SVD is useful in noise reduction, as shown in
[11], and is also widely used in computer vision for tasks such
as object recognition and feature reduction. Yan et al. show
that the SIFT descriptor is enhanced via PCA [13]. Looking
at figure 7, it can be seen that zero compression results in
the most accurate estimates. It seems that SVD may reduce
the probability of erroneous feature matches which reduce
homography accuracy.

The corners estimated using RANSAC are reliable until
compression levels of around 65% for SURF-64, and 75%
for SURF-128, as shown in Figure 6. In some cases, accurate
corners could be calculated at 85% compression, however such
high levels of compression were not reliable.

SURF-128 was on average 23% more accurate than SURF-
64 at reliable compression levels. This is at a cost of higher

Fig. 4. Screenshot of the tested software. The field of view (FOV) of
camera one is plotted as a white outline in camera two. Matchingfeatures
are shown as green circles. Note that erroneous feature matches, such as
those outside camera one’s FOV, are detected and disregardedduring the
homography calculation.

Fig. 5. FOV corner errors using simple averaging versus descriptor
compression. The large peak at 30% compression of SURF-128 is due to a
large error caused by the homography algorithm converging onan erroneous
solution, which is possible even with no compression.

computation time, however the results show that SURF-128
can be more accurate than SURF-64 when compressed to
a comparable data size (8). SURF-64 performs much better
than SURF-128 as the number of extracted features is reduced
(9). To reduce network traffic while still attaining maximum
accuracy, SURF-128 could be used on a smaller number of
features once an initial estimate has been calculated using



Fig. 6. FOV corner errors using RANSAC versus descriptor compression.
Large inconsistent values produced by the homography calculation are re-
jected, resulting in much more accurate corner estimates.

Fig. 7. A closer look at figure 6. SURF-128 proves to be 25 - 40% more
accurate than SURF-64 at reliable compression levels.

SURF-64.

Fig. 8. Plot of accuracy (1/pixel error) versus data size. Data size is varied
by compression.

Fig. 9. Plot of accuracy (1/pixel error) versus data size. Data size is varied
by adjusting the number of features used.

Compression level had no effect on computation time,
due to the simplicity of the compression process. SVD is
computationally expensive, especially for large numbers of
features. Smarter compression processes may increase the
computation efficiency of the overall algorithm, however this
is left for future research. Chandrasekhar et al. [5] used PCA
to reduce the dimensionality of SURF descriptors in a similar
way, however their focus was not on computational efficiency
during the compression stage.

B. Effect of Feature Reduction

As the number of extracted features was reduced, the
accuracy of the algorithm varied greatly from scene to scene,
as can be seen by the size of the error bars in Figures 10
and 11. It is likely that this is due to the lack of spacing of
extracted features, causing clustering around distinct objects.
The scenes used varied in the number of distinct objects on
planar surfaces, meaning the homography calculation benefited
from more planar point matches in some scenes and not
others. Also, the reduction of feature points was achieved by
increasing the contrast gradient threshold. Although features
with higher contrast gradients may be easier to detect from
different viewpoints, their descriptors may not necessarily
match. This would result in fewer matching features, making
the homography calculation less accurate.

Using the tested scenes, errors of less than ten pixels
required 350 or more extracted features. In their use of k-
d trees to separate features, Cheng et al. [6] found that as few
as 78 features was enough to perform reliable and accurate
camera calibration.

Computation time increased exponentially with increasing
extracted features as expected, shown in Figure 12. This is
due to SVD used in compression, since it hasO(m × n2)
complexity.

SURF-64 and SURF-128 produced similar error responses
to a reduction in extracted features, as can be seen in Figures
10 and 11. Therefore, SURF-64 should be used for faster
computation. Errors of less than ten pixels were produced by



Fig. 10. FOV corner error using simple averaging versus the number of
extracted features.

Fig. 11. FOV corner error using RANSAC versus the number of extracted
features. Note the large reduction in error due to the use of RANSAC.

using 350 or more features, however the accuracy is heavily
scene-dependent as discussed earlier.

C. Minimum Reliable Data Size

Although constraints on network traffic will vary between
networks, it is desirable to send as little data as possible
to calculate image overlap. The results of this paper show
that SURF-64 can achieve reliable overlap calculation using
less transmitted data than SURF-128, however SURF-128 can
achieve higher overall accuracy.

The OpenCV implementation of SURF stores feature infor-
mation such as orientation and scale in a 24-byte structure for
each feature. Descriptor vector elements are of 4-byte floating
point type, resulting in 256 byte descriptors for SURF-64 and
512 bytes for SURF-128.

Using SURF-64, for each set ofN extracted feature points,
the uncompressed data for network transmission is:

• Number of features, sent as integer -4 bytes
• Feature information -N × 24 bytes
• Descriptors -N × 256 bytes

Fig. 12. Number of extracted features versus computation time per frame.
Variability in computation time is due to time measurement being taken over
the complete frame cycle, thus including operating system overhead, camera
frame capture time variability etc.

Using SURF-64 descriptors, a compression level of 65% was
deemed the maximum reliable compression level, after which
errors in excess of 50 pixels were generated. Using 200-300
features and 65% compression produces a data size of 22 -
34kB per frame, with expected errors of around 16 pixels.
Accuracy was nearly doubled by decreasing compression to
50% (31 - 49kB per frame).

SURF-128 at a compression level of 28% reduced pixel
error to 6, while producing 78 - 118kB per frame. An
adaptive method could improve accuracy while maintaining
lower transmitted data by obtaining an initial estimate of the
homography using SURF-64, then reducing error by transmit-
ting small numbers of features with SURF-128 descriptors at
lower compression.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, an algorithm to calculate image overlap
in a distributed smart camera network using minimal data
transmission and low quality image sensors was described and
evaluated. For this purpose, it was found that the SURF-128
descriptor achieved higher accuracy than SURF-64, at the cost
of computational efficiency and larger data sizes. SURF-64
produced reliable estimates with the minimum transmitted data
size, estimating overlap to within 9 pixels of the true overlap
while transmitting 30kB per captured image.

Results of the algorithm testing suggested that moderate
levels of compression using SVD reduced the likelihood of
erroneous matches of SURF features, however this was not
confirmed.

We are currently focusing on the following areas for further
algorithm improvements:

• More efficient means of compression
• Feature distribution to increase the probability of detect-

ing overlap. Cheng et al. [6] achieved this through the use
of k-d trees, while Brown et al. [4] developed a technique
called “adaptive non-maximal suppression”.



• Accuracy of the homography. An iterative technique to
improve the homography in the presence of image noise
is presented in [7].

• Implementation of the algorithm in a many-camera net-
work
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