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Abstract—An algorithm for accurately estimating camera over- Computational efficiency is of particular importance in
lap in a distributed smart camera network with minimal data  djstributed smart camera networks, which typically employ
transmission was developed and evaluated, as a preliminary step low-power embedded processors. In addition, transmitéd d
towards three-dimensional calibration. The algorithm incorpo- L ’
rates SURF (Speeded-Up Robust Features) to find matching must b_e_ kept t_o a minimum to conserve power and network
features in live, low-quality images provided by web cameras. To availability. This means that detected feature data must be
reduce transmitted data, the number of extracted features wa reduced and/or compressed before transmitting between cam

reduced, and feature descriptors were compressed using singula eras, while still maintaining enough information to acteha
value decomposition. Reliable overlap estimation accurate to match image features.

within 9 pixels was achieved while sending just 30 kilobytes per

captured image. In this paper, the effectiveness of an algorithm incorpogat

the SURF feature detector and descriptor in determining
|. INTRODUCTION camera overlap is tested under varying levels of data remfuct

h ¢ ol i and compression. Live, low-quality images are provided by
As the cost of powerful embedded processors continues,{a, cameras, to test the practicality of the algorithm when

drop, distributed smart camera networks are becoming mo[&, ¢ |ow._cost image sensors. Camera overlap is found as a
and more viable options in applications such as security apg v of calculating image homographies, which can be used
monitoring. With the ability to perform many user-defined,g 5 nreliminary step in the camera calibration process. The
tasks such as object recognition and tracking, intrusion dg rithm is tested using two cameras, however is desigmed t

tection and localization, smart cameras are likely to mepla,, o \vith a many-camera network. Analysis of such a network
many older systems which rely on human monitoring of all | for future research

wder:) |Eforn}atloré.. ibuted K This article is presented in the following order. Section II
¢ -:_ ed ene ';S 0 '?:” .Ut sr?art camera networks O\tller;:r;bovers a brief review of the current literature on distrdalit
ralized smart monitoring systems are many - no costy @t camera calibration techniques. Section Ill provides
processors, less communication infrastructure and thigyabi

¢ e t dcall e Th hallenak background theory on camera overlap calculation using ho-
0 scale 1o practically any size. There are some challenges ographies, the SURF descriptor and its implementation in

to be ?verr(]:_OLne_ n thlt_abde\_/elop_lr_?lgnt_of slmart(;:amere_l f_‘etW‘;]r Bftware. The complete camera overlap detection algorithm
one of which is calibration. This involves determining the, 5 jmplementation is subsequently presented in sectio

location and orientation of all cameras within the networlfV with results following in section V. Section VI conclusle
which is useful in tasks such as 3D reconstruction, and bbjet\ﬁé report, and includes suggestions'of future work

localization and tracking. Ideally, the calibration prssevould

be completely automatic and performed in minimal time.
P y P II. RELATED WORK

A. Camera Calibration and SURF Many methods are available to obtain camera calibration.
To perform automatic calibration, a robust method of findA calibration object such as a flashing light, or an easily

ing geometric relationships between the cameras’ imagesdistinguishable object, when moved within view of multiple

needed. A common way to perform stereo camera calibraticameras can reveal camera positions via triangulatiors iBhi

is by matching common objects in each camera’s field dbne in [14], [17], [19].

view usingfeature detectors and descriptors. This method can  Other sensor data such as GPS, laser ranging or wireless

also be used to calibrate multi-camera networks. One rigcentetwork signal strength are also used, and would be required

developed scale and rotation invariant feature detectdr an sparse networks of cameras whose fields of view do not

descriptor is SURF (short for “Speeded-Up Robust Featliresiverlap. This approach, callesnsor fusion, is considered in

[3]. It has proven to be as effective as similar well-knowifil], [16], [18], [20]. In this paper, however, a dense netiwor

descriptors such as SIFT [15], while being much more corof cameras with at least some overlapping fields of view is

putationally efficient [2], [3]. hypothesized.



Extra sensors and/or the use of a calibration object movel /
within the field of view of all cameras within the network aid @
in obtaining an accurate calibration, however they in@dhe
complexity of the task in terms of equipment and potentially s
cost. Performing the calibration task using image dataealon
is a quick and cheap method, however relies on robust imag
processing techniques. |

Devarajan et al. [6], [8], [9] developed a robust calibratio
method using image data alone. This was done by matchini R
SIFT features of overlapping static images taken with a
handheld digital camera. The SURF [3] feature detector uset
in this paper is able to perform the same task with similar _ L

. . . Fig. 1. The standard SURF-64 descriptor. The 4 grid is placed over

results, using less CPU resources. Also, live webcam 'magﬁ%h detected feature. Each grid element contains fourlsuateats in which
are used instead of high-quality still images, due to thaw | the contrast gradient vector is calculated. These vectershen summed to
cost and ease of interface via USB. produce the average gradient information for the grid eIemEmloc, Z|dz|,

Chandrasekhar et al. [5] examined the effect of compressigédy and|dy|
SURF and SIFT descriptors using transform coding. They
achieved near-perfect image matching performance atré6
duction in SURF data size. Their focus was on image retrie
rather than camera calibration, however their approacHavo
be ideal for a wireless camera network calibration task

which minimal data was to be transmitted across the network. de’ Z'dﬂ’ Zdy’ Z|dy| - Zx )

Ill. BACKGROUND THEORY These vectors are stored sequentially in a larger vectarittes
A. Calculating Image Overlap with Homographies ing the entire grid, resulting in a 64 dimensional descripto

Camera overlap can be calculated by determining the hector for each feature (referred to as SURF-64):
mography between images of a planar surface viewed by two . _
cameras. X1 3 Zre) = dx @)

A homography, otherwise known as phanar projective To increase distinctiveness of the descriptors, an “extdhd
transformation [12], describes the relationship between twodescriptor is available, which computes the sumsigpfand
dimensional image points viewed from different perspestiv |d,| separately for, < 0 andd, > 0, and similarly separates
The relationship between points on one plahand a second d, and|d,|. This doubles the size of the descriptor and takes
plane P’ is defined by a non-singulaéd x 3 matrix H (the only slightly longer to compute, but increases matchingetim
homography matrix) such that: significantly due to its larger size. The extended desarifoto

, the4 x 4 grid, called SURF-128, was found in [3] to have the
x = Hx @ highest accuracy amongst all SURF descriptors.
where x and x’ are the point coordinates on the first and
second plane.

Equation 1 was used in this paper to project the outline The algorithm was developed for two cameras feeding
of one camera’s field of view onto the other camera’s imagénages to a single computer, with the future intention of
thus providing an easy visual indicator of camera overlap. Adeveloping a many-camera network. The image processing
obvious limitation of using homographies is that enough fefinctions used were provided in the Open Source Computer
tures on a planar surface must be detected for the homograpfgion (OpenCV) library.

calculation to work. This limits the number of scenes thig th The process followed for each frame captured by the first
algorithm can be used on. camera is described below.

(,?scriptor. Bay et al. [3] found the best tradeoff in the
x 4 grid. Each grid element contains a four element vector
%escribing the intensity pattern as shown in Figure 1:

IV. DESCRIPTION OFALGORITHM

B. SURF A. Feature Extraction and Compression

This section provides an outline of the SURF descriptor, Features and descriptors from camera one’s images are
which is useful in understanding the compression stageeof thxtracted using the SURF feature extractor function prexid
algorithm. For a full description of SURF, see [3]. The SURIh the OpenCYV library.
feature descriptor is based on the proven method of mappindgReducing the number of features allows faster computation
local contrast gradient orientation. The gradient in eagtl gin the descriptor extraction, compression, decompresaiah
segment is represented by the sums of first order Haar wavdéstture matching stages of the algorithm.
responses in the andy directions. Spacing of feature points was not dealt with. Cheng et al.

A number of grid sizes can be used; larger grids increafd] used k-d trees to spread detected features, however this
computation time while increasing the distinctivenessta t was overlooked for this paper due to time constraints.
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To compress the calculated feature descriptors, destzipto
d, are arranged into a matri:
T
[di d2 -+ dn] =D (4)
which results in anN x 64 (for SURF-64) or N x 128 Ignore
(for SURF-128) matrix, whereV is the number of features.

Singular value decomposition (SVD) is performed Bnto

find s principal components, of which an adjustable amoufi &, 7100 folowed, fr each rane caplued by the cametae
can be sent over a network connection. The approximat@ghera one’s descriptors. Matching is performed at cameraRuaitesting
descriptor matriXD’ at the receiving end is then constructed byf the algorithm, the compression and matching processes \eef@med by
back-substituting the SVD matrices. The level of comprass;j @ SN9'e computer.
is defined as the inverse of the number of principle companent

sent: homography calculation becomes less stable as the supplied

data is reduced, and occasionally produces very largeserror
where ¢ is the descriptor size an®Vyc, is the number of that dominate the average. To mitigate these effects, RADSA
principle components. is used on the corner estimates to reject such outliers.

COMPIessiofeceny= 100 x (¢ — Npca) /¢ ®)

B. Feature Matching, Homography Calculation and Camera C. Accuracy Measurements

Overlap Estimation The accuracy of the projected field of view was measured
Matching features are found using a simple naive nearest obtaining an estimate of the correct corners using large
neighbors algorithm, which compares every descriptorregai numbers of features, no compression, and RANSAC of corner
one another. estimates over many frames. These corners can then be com-
Calculation of the homography is done using Randogared with those calculated from smaller data sets. Thilinit
Sample Consensus (RANSAC) [10] on the matching featurestimate of the correct corners must be checked manually
then using a non-linear algorithm to minimize reprojectioto ensure that they are reasonable. Although these “cbrrect
error, as described in Chapter 4 of [12]. corners will not be exactly correct, the aim was to compage th
Figure 2 shows an example setup of the two cameras uggftformance as data is limited, not to test the general acgur
for testing. The calculated homography is used to projest SURF.
the corners of camera one’s field of view onto camera two’s The same method was used by Shafique et al. in [21],
images, using equation (1). however they do not mention how they obtain the “true”
Due to camera noise and erroneous feature matches, comghography. They call the error between the estimate and
estimates vary from frame to frame. The magnitude of thifue homographyransfer error e:
variation increases as less features are extracted andpdesc "
tors are compressed. To suppress these errors, the cotier es e = 1 ZHH*Pi — Hps|| (6)
mates can be averaged over a number of frames. However, the n



where H* is the estimated homographi the true homog-
raphy andp; are the points (corners in this case) in camera
one’s field of view.

D. Implementation

Testing of the algorithm was done using using a laptop
computer with a 1.6 GHz Intel Pentium M processor, and two
attached Logitech Quickcam E3500 web cameras. A linux OS
(Ubuntu) was used, and the computer vision functions were
provided in the OpenCYV library.

The scenes used for testing comprised mainly of wall
with distinctive patterns (posters/signs). Fourteen sseim
total were used for testing. For each scene, ten differen
compression levels as well as ten different extracted featu
counts were used for each descriptor size.

The number of features was varied with a fixed compressior
level of 21.88%, since it was realized early on that slightheo
pression of the descriptors seemed to produce more reliabl
results. The number of extracted features was set at 600 fq
the compression tests, to allow a reasonable chance of the
being matching features present.

V. RESULTS

The data shown in these results includes the corner esmat

using simple averaging separate to the corner estimateg u%g. 4. Screenshot of the tested software. The field of vie@\f of
RANSAC. camera one is plotted as a white outline in camera two. Matcfeatures

The graphs of averaged corner estimates provide an insi tqshown_as green circle§. Note that erroneous featyre esat_shch as
into the scale of errors produced by SURF and the homQ%Q;f)g?;;ﬂgecaﬁimgin?”es FOV, are detected and disregadety the
raphy calculation as the features are reduced and degsripto

compressed. As discussed in IV-B simple averaging produce]

much less accurate results than RANSAC. The graphs of errol ' [_surrea

using RANSAC show the results of the entire algorithm. 900 - - SURF-128

A. Effect of Descriptor Compression

As can be seen in Figure 5, average error is generally lov
until compression levels rise above 50%. Very large errars ¢
occur even at low compression levels as discussed in IV-B, a
shown by the large peak at 30% compression of the SURF-12

descriptor.
Ignoring the large peak of the SURF-128 descriptor, averagt 200 ¢
error is slightly larger at zero compression compared thgea 100 [ 2 i ; 1
of 10-50%. This is likely due to the use of SVD to compress 0
the descriptors. SVD is useful in noise reduction, as shawn i
[11], and is also widely used in computer vision for taskshsuc
as object recognition and feature reduction. Yan et al. show
that the SIFT descriptor is enhanced via PCA [13]. Looking)g- ?éssiolr:]O'\l'/h g?;?e; eé?kfsatl‘;(i)';? ngmp'ree Szy:r:a(%i”guggsluzzegﬁ;g
at figure 7, it can be _Seen that zero compression IF(':‘Sl'”tslal ePerror céused bygthephomograplsy algc?rithm convergingroarroneous
the most accurate estimates. It seems that SVD may redgé@tion, which is possible even with no compression.
the probability of erroneous feature matches which reduce

homography accuracy.
The corners estimated using RANSAC are reliable untilomputation time, however the results show that SURF-128

compression levels of around 65% for SURF-64, and 75&&n be more accurate than SURF-64 when compressed to
for SURF-128, as shown in Figure 6. In some cases, accurateomparable data size (8). SURF-64 performs much better
corners could be calculated at 85% compression, howevér stitan SURF-128 as the number of extracted features is reduced
high levels of compression were not reliable. (9). To reduce network traffic while still attaining maximum
SURF-128 was on average 23% more accurate than SURIEeuracy, SURF-128 could be used on a smaller number of
64 at reliable compression levels. This is at a cost of highiatures once an initial estimate has been calculated using
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by adjusting the number of features used.

Compression level had no effect on computation time,
due to the simplicity of the compression process. SVD is
computationally expensive, especially for large numbefrs o
features. Smarter compression processes may increase the
computation efficiency of the overall algorithm, howeveisth
is left for future research. Chandrasekhar et al. [5] used PC
to reduce the dimensionality of SURF descriptors in a simila
way, however their focus was not on computational efficiency
during the compression stage.

B. Effect of Feature Reduction

As the number of extracted features was reduced, the
accuracy of the algorithm varied greatly from scene to scene
as can be seen by the size of the error bars in Figures 10
and 11. It is likely that this is due to the lack of spacing of
extracted features, causing clustering around distinfectd

°The scenes used varied in the number of distinct objects on
planar surfaces, meaning the homography calculation hedefi
from more planar point matches in some scenes and not
others. Also, the reduction of feature points was achiewed b
increasing the contrast gradient threshold. Althoughufesst
with higher contrast gradients may be easier to detect from
different viewpoints, their descriptors may not neces$gari
match. This would result in fewer matching features, making
the homography calculation less accurate.

Using the tested scenes, errors of less than ten pixels
required 350 or more extracted features. In their use of k-
d trees to separate features, Cheng et al. [6] found thatas fe
as 78 features was enough to perform reliable and accurate
camera calibration.

Computation time increased exponentially with increasing
extracted features as expected, shown in Figure 12. This is
due to SVD used in compression, since it l@aén x n?)
complexity.

SURF-64 and SURF-128 produced similar error responses
to a reduction in extracted features, as can be seen in Bigure

Fig. 8. Plot of accuracy (L/pixel error) versus data sizetabsize is varied 10 and 11. Therefore, SURF-64 should be used for faster
by compression.

computation. Errors of less than ten pixels were produced by
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extracted features. Variability in computation time is due to time measurement beaigh over

the complete frame cycle, thus including operating systemheasl, camera
frame capture time variability etc.
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100 Using SURF-64 descriptors, a compression level of 65% was

deemed the maximum reliable compression level, after which
errors in excess of 50 pixels were generated. Using 200-300
features and 65% compression produces a data size of 22 -
34kB per frame, with expected errors of around 16 pixels.
Accuracy was nearly doubled by decreasing compression to
50% (31 - 49kB per frame).

SURF-128 at a compression level of 28% reduced pixel
error to 6, while producing 78 - 118kB per frame. An
adaptive method could improve accuracy while maintaining
lower transmitted data by obtaining an initial estimate haf t
homography using SURF-64, then reducing error by transmit-
ting small numbers of features with SURF-128 descriptors at
lower compression.
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Fig. 11. FOV corner error using RANSAC versus the number ofaexed
features. Note the large reduction in error due to the useANMFAC.

VI. CONCLUSIONS ANDFUTURE WORK

using 350 or more features, however the accuracy is heavilyn this paper, an algorithm to calculate image overlap

scene-dependent as discussed earlier. in a distributed smart camera network using minimal data
o _ transmission and low quality image sensors was describeéd an
C. Minimum Reliable Data Sze evaluated. For this purpose, it was found that the SURF-128

Although constraints on network traffic will vary betweerdescriptor achieved higher accuracy than SURF-64, at tse co
networks, it is desirable to send as little data as possilmé computational efficiency and larger data sizes. SURF-64
to calculate image overlap. The results of this paper shgwoduced reliable estimates with the minimum transmittete d
that SURF-64 can achieve reliable overlap calculation gusisize, estimating overlap to within 9 pixels of the true osprl
less transmitted data than SURF-128, however SURF-128 aalnile transmitting 30kB per captured image.
achieve higher overall accuracy. Results of the algorithm testing suggested that moderate

The OpenCV implementation of SURF stores feature infolevels of compression using SVD reduced the likelihood of
mation such as orientation and scale in a 24-byte structure érroneous matches of SURF features, however this was not
each feature. Descriptor vector elements are of 4-byteirilpat confirmed.
point type, resulting in 256 byte descriptors for SURF-64 an We are currently focusing on the following areas for further

512 bytes for SURF-128. algorithm improvements:
Using SURF-64, for each set of extracted feature points, , More efficient means of compression

the uncompressed data for network transmission is: . Feature distribution to increase the probability of detect
o Number of features, sent as integet bytes ing overlap. Cheng et al. [6] achieved this through the use
« Feature information V x 24 bytes of k-d trees, while Brown et al. [4] developed a technique

« Descriptors -N x 256 bytes called “adaptive non-maximal suppression”.



Accuracy of the homography. An iterative technique tf10] Martin A. Fischler and Robert C. Bolles. Random samplasemsus:
improve the homography in the presence of image noise

is presented in [7].

Implementation of the algorithm in a many-camera neft1]

work
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