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ABSTRACT

In today’s complex networks, timely identification and resolution of performance
problems is extremely challenging. Current diagnostic practices to identify the root
causes of such problems primarily rely on human intervention and investigation.
Fully automated and scalable systems, which are capable of identifying complex
problems are needed to provide rapid and accurate diagnosis. The study presented
in this thesis creates the necessary scientific basis for the automatic diagnosis of
network performance faults using novel intelligent inference techniques based on
machine learning. We propose three new techniques for characterisation of net-
work soft failures, and by using them, create the Intelligent Automated Network
Diagnostic (IAND) system.

First, we propose Transmission Control Protocol (TCP) trace characterisation
techniques that use aggregated TCP statistics. Faulty network components embed
unique artefacts in TCP packet streams by altering the normal protocol behaviour.
Our technique captures such artefacts and generates a set of unique fault signatures.
We first introduce Normalised Statistical Signatures (NSSs) with 460 features, a
novel representation of network soft failures to provide the basis for diagnosis.
Since not all 460 features contribute equally to the identification of a particular
fault, we then introduce improved forms of NSSs called EigenNSS and FisherNSS
with reduced complexity and greater class separability. Evaluations show that we
can achieve dimensionality reduction of over 95% and detection accuracies up to
95% while achieving micro-second diagnosis times with these signatures.

Second, given NSSs have features that are dependent on link properties, we
introduce a technique called Link Adaptive Signature Estimation (LASE) using
regression-based predictors to artificially generate NSSs for a large number of link
parameter combinations. Using LASE, the system can be trained to suit the exact
networking environment, however dynamic, with a minimal set of sample data.
For extensive performance evaluation, we collected 1.2 million sample traces for
17 types of device failures on 8 TCP variants over various types of networks using
a combination of fault injection and link emulation techniques.

Third, to automate fault identification, we propose a modular inference tech-
nique that learns from the patterns embedded in the signatures, and create Fault
Classifier Modules (FCMs). FCMs use support vector machines to uniquely iden-
tify individual faults and are designed using soft class boundaries to provide
generalised fault detection capability. The use of a modular design and generic al-
gorithm that can be trained and tuned based on the specific faults, offers scalability
and is a key differentiator from the existing systems that use specific algorithms to
detect each fault. Experimental evaluations show that FCMs can achieve detection
accuracies of between 90% – 98%.

The signatures and classifiers are used as the building blocks to create the IAND
system with its two main sub-systems: IAND-k and IAND-h. The IAND-k is a
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modular diagnostic system for automatic detection of previously known problems
using FCMs. The IAND-k system is applied for accurately detecting faulty links
and diagnosing problems in end-user devices in a wide range of network types
(IAND-kUD, IAND-kCC). Extensive evaluation of the systems demonstrated high
overall detection accuracies up to 96.6% with low false positives and over 90%
accuracy even in the most difficult scenarios. Here, the FCMs use supervised
machine learning methods and can only detect previously known problems. To
extend the diagnostic capability to detect previously unknown problems, we pro-
pose IAND-h, a hybrid classifier system that uses a combination of unsupervised
machine learning-based clustering and supervised machine learning-based clas-
sification. The evaluation of the system shows that previously unknown faults
can be detected with over 92% accuracy. The IAND-h system also offers real-time
detection capability with diagnosis times between 4 µs and 66 µs.

The techniques and systems proposed during this research contribute to the
state of the art of network diagnostics and focus on scalability, automation and
modularity with evaluation results demonstrating a high degree of accuracy.
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CHAPTER ONE

INTRODUCTION

Computer networks have become a vital and ubiquitous part of our lives. In

recent years, most technological developments in the networking field have pre-

dominantly focused on improving connection medium, connection speeds, new

architectures, managing congestion and network-dependent applications. As ap-

plications become more bandwidth-intensive and networks become faster, users’

demand for high-speed delivery of information has increased in tandem with

decreased tolerance for performance issues and “down-time“. In short, users ex-

pect always-on connections without interruption. With the complexity of today’s

networks, it is becoming impossible to rely on traditional methods to identify and

resolve performance problems and bottlenecks in end-user devices, access links,

and server systems. Rapid resolution of users’ problems, especially connection

performance issues, will have a major impact on a network service provider’s

service quality in an extremely competitive and rapidly-changing environment.

1.1 Changing face of network services and consumer

habits

Historically, computer software and user data resided in the end-user devices.

Networks were predominantly used only to share batches of information between
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devices, surf the web (intermittent communication between end-user and web

server) or to communicate with highly specialised web services. 10-15 years ago,

loss of connectivity in a personal computing device or in an enterprise workstation

did not mean any tangible loss of productivity, or for the most part, usability of

the device. Network performance issues only really affected a handful of very

specialised applications and high-performance computing services.

However, cloud computing is a revolution that is defining the Information

Technology in the second decade of the 21st century. The rising popularity of

cloud computing services, especially Software-as-a-Service (SaaS) [1], suggests

that most common user applications will soon be moved to remote servers (See

Figure 1.1). Next-generation operating systems (OSs) such as Google Chrome

OS further extend the cloud computing concept to run only web applications

Figure 1.1: Cloud computing involves deploying groups of servers and software
that allow centralised data storage and on-line, on-demand access to applications
and resources. With cloud services, especially the Software-as-a-Service computing
model, the consumption habits of end-users have drastically changed.
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on user devices, and OSs themselves are heavily dependent on reliable network

connections [2]. Whilst the transition from traditional computing to a fully cloud-

based ecosystem is rapidly unfolding, average user still uses a mixture of on-

device and SaaS type applications on a day-to-day basis. In addition, with new

types of services such as high-definition video streaming, on-line gaming, file

sharing/archiving, word processing and other media-heavy applications, users

consume increasing amounts of data through their devices. This phenomenon is

not limited to ordinary consumers, but is also apparent in enterprises, as companies

move all their applications to the cloud at a rapidly increasing pace [3].

With the rapid adoption of cloud applications by the consumers, always avail-

able network connections and consistently fast communication speeds are be-

coming critically important. The networking research community has now con-

verged on the common understanding that performance unpredictability and

data-transfer bottlenecks are going to be significant obstacles to satisfactory cloud

computing experience [1, 4].

1.2 Network failures and challenges

Performance management is a complex yet crucial part of present-day networks.

Users worldwide expect and rely on network connectivity for day-to-day and even

critical activities.

Network failures have been commonly divided into two main categories [5,

6, 7, 8]: “hard failures“ and “soft failures“. A hard failure is characterised by the

inability of the network to deliver any bandwidth at all. Possible causes include

power failures, physical discontinuities in network cables, or failures of major

network components (e.g., routers or gateways). Detection of hard failures is not

difficult, since if not noticed immediately by operators, users are sure to inform

network personnel within minutes of the failure. Soft failures are less well-defined,
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but the view of most of the research literature is that soft failures are characterised

by degraded performance, or the partial loss of network bandwidth. The fact that

soft failures may be seen as performance degradations suggests that to detect the

onset of such an event, performance parameters could be measured with the goal

of detecting sudden, anomalous shifts in performance. One difficulty with this

idea is that performance levels, degradations, and time-scales of the shifts need

definitions. Due to the constantly-changing character of a network environment,

network performance shifts, and by association, faults are by their very nature

ill-defined. A complicating factor is that network protocols make allowances for

various error conditions. For example, a missed packet will be retransmitted.

The retransmission consumes bandwidth that would have been available if the

original packet had not been missed. Another example is collisions. Most would

agree that the occurrence of one collision is not an error; the Ethernet, in fact,

relies on collision phenomena for its normal operation [6]. Are two collisions in

a period of one second considered an error? Twenty collisions? Two thousand

collisions? Where and how does one draw the line? Because the network protocols

accommodate the presence of at least some errors as a standard part of network

operation, the definition of a network fault is necessarily fuzzy.

In this work, we define a “healthy“ user device (UD), as a device capable of

delivering typical network performance in the prevailing local network circum-

stances to an end-user. Severe degradation of network quality from the typical

baseline is defined as a soft failure. Resolution of such soft failures is critically im-

portant for maintaining a user’s quality of experience (QoE) [9]. End-user devices

are defined as devices used directly by an end-user to communicate, for example,

a personal computer, mobile phone, laptop or a tablet.

The definition of soft failure suggests that a failure in any part of the communi-

cation system (in any protocol layer) that causes the user to consistently experience

a significantly lower network quality than what is “typical“ can be considered as a
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root cause of the failure. As an example, a user signing up for a fibre connection

with 20 Mb/s typical download and upload speed can reasonably expect the

experienced data transfer rate to fluctuate within a few megabits (10-20 Mb/s).

However, if the user is constantly experiencing a 3 Mb/s bandwidth, a reasonable

conclusion is the existence of a soft failure.

Slow network connections and connection interruptions experienced by users

are a major issue, and therefore, two of the most common customer complaints

received by ISPs. For example, according to the Ofcom quality of service review

for 2009 [10], in the UK broadband market, nearly half the customer technical

complaints were because of sluggish network connections or poor line quality

(Figure 1.2a). Most of these problems occur either at the access link or the user’s

device. A survey by Cisco Systems shows that as much as 30% of wireless network

performance problems are directly or partly caused by misconfiguration or faults

at the user devices (Figure 1.2b) [11]. Almost all out of the box computers and

operating systems are supplied with conservative default network parameters.

Although these systems offer extensive customisation capabilities, the knowledge

required for reconfiguration is a problem in practice. Recent studies have found

that network data rates reached by novice users are only one-third of what ex-

(a) Main types of fault/repair complaints
received by UK ISPs [10].

(b) Major issues contributing to wireless network
performance problems [11].

Figure 1.2: Recent studies have found that slow network connections are a major
problem, caused mainly by faulty access links or faulty user devices.
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pert users typically achieve, a phenomenon commonly referred to as the ”wizard

gap” [12]. In addition, a number of new industry studies cite that a primary

challenge in managing cloud services is the lack of tools to identify the sources

of performance bottlenecks and rapid troubleshooting [3, 13]. Furthermore, au-

tomation is a mandatory requirement for achieving highly-scalable cloud services,

which presents a significant research challenge for the creation of comprehensive

diagnostic solutions [13].

1.3 Network diagnosis

In general, detecting network faults and identifying the root causes is referred

to as network diagnosis. Diagnosis of the root causes of network performance

problems requires a methodical approach: first, to isolate the faulty segment of the

network and second, to identify the exact cause of the problem.

Root causes of the network performance problems experienced by end-users

can be traced to service provider servers, backbone networks, access networks, and

UDs [14, 15]. Finding and fixing a network performance or configuration problem

is a strenuous and complex task. It requires time, energy, and expertise to locate

problems, and it is difficult for users to know whom to contact when the source and

destination computers are located in different administrative domains. The main

question network operators hear today is “my application is slow, what is wrong

with the network? “ To answer this question, the general solution is to install some

specialised packet-sniffing hardware/software, spend a long time gathering data,

and then find someone with the engineering expertise required to analyse the

application’s traffic. In enterprise environments, IT personnel have traditionally

relied on network monitoring systems (NMSs) to detect the signs of network

problems. However, due to the complexity of such systems and the difficulty of

formalising the scope of the diagnosis task itself, diagnosis has historically been
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a largely manual process requiring significant and expensive human input. This

complexity means that most performance problems, in contrast to connectivity

problems, remain an unsolved mystery.

The main emphasis of past research has been on analysing problems in core

networks, access networks, and servers, since such issues can potentially affect

a large number of users [16, 17, 18]. In contrast, performance bottlenecks at UDs

have received little attention, mainly because of the complexities that arise with

the large variety of devices [19]. Furthermore, the assumption that problems at the

UDs typically impact only a few users has discouraged researchers from creating

UD-specific diagnostic applications. Nevertheless, studies have found that many

network problems occur at the UDs, and their cumulative impact is far more

significant than faults in the core networks [20].

There are varying opinions on the primary cause of soft failures. Parameter

misconfiguration in various protocol layers has been found to be a common issue

causing performance bottlenecks. Often this is the result of the overly conservative

default networking parameters supplied with almost all out-of-the-box operating

systems [12]. Configuration changes that occur in the background when installing

new applications can also cause soft failures unbeknown to the user. In addition,

hardware problems [21], network interface card (NIC) driver issues [22], kernel

level software problems, mismatches between system settings and the link [23],

and protocol implementation errors [24] have commonly been found to cause soft

failures.

Most common performance issues are often simple to correct, but harder to

diagnose. As a result, most customer connection issues persist and stay as, not fully

resolved, even after several attempts to correct them [10]. Most users experience

severely degraded network performance, and computer networks are under-

utilised because of unresolved network issues [12, 25]. The Internet2 performance

initiative found that the median bandwidth in their 10 Gb/s backbone in April
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2010 was only about 3.05 Mb/s [26]. The diversity of user devices and access

links, concerns about allowing remote access to diagnose their devices and the

ever-increasing set of protocol parameters worsen the diagnostic difficulties.

1.3.1 TCP as a window to network behaviour

The content and behaviour of various types of protocol packet streams are con-

stantly affected by the characteristics of end-to-end path elements. The transport

layer, present in all communication systems, is tasked with end-to-end packet de-

livery. The most common transport layer protocol, Transmission Control Protocol

(TCP) [27], dominates the Internet and private networks responsible for more than

90% of data transfers [28]. TCP sits towards the top of TCP/IP protocol stack and

masks lower layers’ behaviour to minimise their effects on the application layer.

This unique position of the TCP in the protocol stack offers a window into the

behaviour across all layers, which are otherwise impossible to observe from any

other single vantage point [12]. The effects embedded into TCP packet streams, or

“artefacts“, can be used as an excellent source of information to remotely diagnose

a performance bottleneck.

Analysis and inference of TCP packet traces is a sophisticated approach used

for diagnosing extremely complicated network problems in highly specialised

cases. Inferring from a packet trace is a cognitive process and mainly depends on

the investigator’s experience. Although this technique is comprehensive, most

ISPs overlook the advantages because of the complexities of the process and the

resource requirements.

1.3.2 Machine learning as a diagnostic tool

Machine learning is a scientific discipline that is concerned with the design and

development of algorithms that allow computers to evolve behaviours based
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on training data. Machine-learning techniques borrow heavily from statistical

techniques such as probability theory, distribution analysis, and entropy theory.

Machine learning specifically relies on training and cross-validation, which in-

volves partitioning a sample of data into complementary subsets, performing the

analysis on one subset, called the training set, and validating the analysis on the

other subset, called the validation set or testing set. Cross-validation can provide

an estimate of model accuracy.

Diagnosis algorithms that rely on machine learning can be grouped into two

broad categories:

1. unsupervised learning, which identifies patterns in unlabelled data typi-

cally by clustering and detects unexpected outlier data points that might be

indicators of failures, and

2. supervised learning, which uses labelled data of successful and failed states

to learn which metrics are most correlated with failed states, or to identify

signatures of recurrent problems from a database of known problems.

Signature-driven machine learning allows system administrators to identify re-

peated problems from a database of known problems. Signature-based approaches

have wide applicability, because studies have shown that typically a half to as

much as 90% of network failures are due to recurrent problems. Most research

has centred on how to represent and retrieve signatures of recognised problems

from the database of known problems. However, in such situations, unsupervised

learning techniques are more applicable, because we do not know about new faults

a priori and therefore will not have the labelled data sets suitable for supervised

learning techniques.

Machine learning-based inference of TCP traces has been used in several se-

curity applications. A number of studies have used machine learning in root

cause diagnosis of enterprise networks [29, 30, 31, 32, 33], access links [34, 35],
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networks [36], and computer systems [37, 31], using inference of information such

as user requests, event logs, and system calls. However, most of these methods

have limited functionality or suffer from restrictions in scalability across platforms,

access to the devices, and diagnostic capability. Our literature survey did not

uncover any comprehensive, scalable, intelligent inference methods of TCP packet

traces for automated network diagnosis.

1.4 Thesis motivation and aims

As discussed previously, network soft failures have a major impact on how end-

users experience the quality of the services on offer today. Our literature survey

found that over the years, significant attention has been given to the creation of

systems and methodologies for diagnosing problems in core networks, access

networks, backbones and servers. However, UDs pose the greatest challenge in

soft-failure diagnosis, and this problem has received little attention for the creation

of scalable, automated work flows.

In summary, this research is motivated by three main factors:

1. Lack of comprehensive UD network performance diagnostic methodol-

ogy: Present attempts to automate the inference/diagnostic process follow

a bottom-up design approach, where a particular algorithm is used to look

for a specific anomaly in the packet trace. However, these tools fall short in

their ability to generalise to new faults and to cope with the ever-increasing

variety of user devices, and the large number of TCP variants.

2. The potential of TCP traces for inferring root causes: TCP traces have been

extremely useful in inferring root causes of complicated network problems

across many protocol layers without having direct access to the faulty section

of the network. Analysis of TCP traces for failure diagnosis is among the

most complex and sophisticated approaches in the network industry, yet
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largely remains a manual process limited to the skills of a select few. The

resources required for physical trace collection, analysis, and inference do

not support the economics of a commercial network.

3. Recent advances in machine learning techniques: The machine learning

concept, which has gained momentum in recent years, provides a foundation

to learn from the known to automatically identify the unknown. However,

the possibility of using machine learning-based inference of TCP traces to

diagnose network performance problems of UD has not been previously

explored. In addition, most studies focus on supervised machine learn-

ing where only the known issues can be identified. The ability to scale an

automated system requires a more sophisticated approach to combine un-

supervised learning with supervised learning to leverage the capabilities of

both techniques.

Following on from these motivating factors, the aim of this research is to

develop and analyse novel inference techniques based on machine learning to

diagnose network soft failures using TCP traces. Using these inference techniques

as the foundation, the research creates the basic building blocks of diagnostic

systems which will perform automated fault diagnosis in various types networks.

By evaluating the systems presented in this thesis using data from controlled

networks and real-world live networks, the research demonstrates the capability

and potential of such systems to automatically diagnose network soft failures and

identify root causes.

1.5 Thesis contributions

The work presented in this thesis propose inference techniques based on machine

learning that learn from hidden, embedded artefacts in the TCP traces due to

network faults. These techniques encompass methods for characterising TCP
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Figure 1.3: Intelligent Automated Network Diagnostic (IAND) system overview.
The system consists of two sub-systems, IAND-k and IAND-h, each of which have
unique and complementary capabilities and characteristics. This thesis specifically
focuses on using the IAND system for diagnosing performance problems in UDs
and detecting faulty links.

traces, creating a standardised signature, reducing signature complexity, and

pattern classification techniques to uniquely identify the signatures.

Using the inference techniques as the foundation, Intelligent Automated Net-

work Diagnostic (IAND) System is proposed for automated diagnosis of network

faults. As seen in Figure 1.3, the IAND system consists of two main complementary

sub-systems, IAND-k for modular and easily scalable diagnosis of known faults,

and IAND-h, a hybrid classifier for both known and unknown problem diagnosis

with real-time detection capability. Both systems have two phases: 1. training

phase uses data from previously identified faults to create detection models and

2. diagnosis phase, the trained systems are operational and unknown samples are

sent through the system for a diagnosis. Table 1.1 shows a comparison between
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IAND-k IAND-h
Architecture Using binary SVMs and a

database of known problems for
automated diagnosis

Uses multi-class classifier and a
database of known problems for
automated diagnosis

Scalability Highly scalable with modular ar-
chitecture

System re-training is required to
scale

Accuracy Previously unknown problems
may lead to false positives, but
fault specific “module tuning“
leads to more accurate diagnosis
when using NSSs

Can accurately recognise and
group previously unknown
problems. Diagnostic capability
automatically improves over
time. Accuracy improves when
using FisherNSSs.

Diagnosis
speed

Slower than IAND-h Provides results in near real-time
when using FisherNSSs

Extendibility Automated process adds new
samples to the known signatures
repository. No new faults are
added automatically

Can automatically extend the sig-
nature repository over time with
new faults

Table 1.1: Comparison between IAND-k and IAND-h Characteristics

characteristics of IAND-k and IAND-h sub-systems. The system is deployed in a

network as shown in Figure 1.4.

The research presented in this thesis specifically focuses on the creation of a sys-

tem for detecting faulty access links and diagnosing the root causes of performance

problems of UDs in highly-dynamic network environments. Diagnosing the root-

causes of link problems is out of scope in this research and will be addressed in

future work. However, the proposed techniques aim to follow a top-down design

approach, which can be adopted for various types of networks to diagnose a wide

range of root causes of performance problems, not limited to the examples given

throughout the thesis. The system proposed in this research focuses on scalability,

automation and modularity, as we believe these attributes will be the cornerstones

of next-generation diagnostic systems.

The key contributions of the research are summarised as follows:

• The proposal of the concept of Normalised Statistical Signature (NSS), a
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Figure 1.4: Deployment of the diagnostic system in a network environment.

minimally invasive, robust method to remotely collect and characterise

network faults using TCP trace statistics.

• The creation of a link-adaptive signature estimation (LASE) technique to

dynamically generate signatures and avoid complexities that arise in rapidly

changing network environments.

• The proposal on IAND system for automated diagnosis of network faults,

specifically focusing on end-user device soft failures.

• The creation of fault classifier modules (FCMs) using support vector machine

(SVM)-based pattern classification for identifying individual network faults.

FCMs include a feature selection process that identifies those features with

the most correlation to a particular fault.

• The creation and evaluation of the IAND-k, a modular and scalable diagnos-

tic system for automatic diagnosis of end-user device problems (IAND-kUD).

The IAND-k system is capable of automating the diagnosis of previously

known problems.

• The creation and evaluation of the IAND-k for cloud computing (IAND-

kCC) system for diagnosing user device bottlenecks in cloud environments.
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• The proposal of EigenNSS and FisherNSS, two forms of signatures derived

from the original NSS for complexity reduction and improved separability.

• The proposal and evaluation of IAND-h, a single hybrid classifier architecture

with the capability of diagnosing both known and unknown faults with real-

time detection capability.

• The creation of one of the largest, accurately labelled active TCP trace datasets

in the research field with 1.2 million samples.

1.6 Thesis outline

This section provides an outline of the thesis content.

The thesis contains seven chapters starting with an Introduction to network

failures and UD performance problems. The first chapter also provides an overview

of the motivation for the study, the research aims and contributions.

Chapter 2, Automated Network Diagnostics: An Overview provides an in-

depth analysis of background research and related concepts. We define some

key concepts and then discuss existing diagnostic practices, anomaly detection

techniques, network characterisation and complexity reduction methods. Next we

discuss how anomaly detection techniques have been applied in diagnosis and

various machine learning techniques before moving to a detailed analysis of why

and how TCP has been utilised for network diagnosis.

Chapter 3 discusses Statistical Signatures of Network Soft-Failures and in-

troduces the concept of normalised statistical signatures (NSSs) to characterise

a TCP trace. This chapter then discusses the fault emulation and data collection

methodology we have followed and introduces the data sets that have been used

throughout this research. This chapter also introduces link-adaptive signature

estimation (LASE), a method to easily generate NSSs to overcome the challenge of

15



dynamic and unstable links.

Chapter 4 introduces the Fault inference and classifier techniques using the

NSSs and machine learning techniques and formulates the basic building blocks

for the creation of more complex systems.

Chapter 5 proposes a proof of concept automated inference system, IAND-k

using the fault inference modules introduced in the previous chapter for diag-

nosing UD problems and link problems. We specifically focus on link problem

detection and exact UD fault identification. We analyse the performance of the

system in real-world network environments with the datasets introduced in Chap-

ter 3 and discuss the strengths and limitations of the system. We also propose

an application of the IAND-k system in private cloud computing environments

(IAND-kCC) and demonstrate the capability of the system to automate diagnosis.

Chapter 6 presents methods that extend the diagnosis of both known and

unknown soft failures using IAND-h, a hybrid architecture that combines super-

vised and unsupervised machine learning methods. The chapter also introduces

two additional signatures derived from NSSs, EigenNSS and FisherNSS, that

reduce the complexity of NSSs and produce better overall performance.

The last chapter, Conclusion, summarises the body of work presented in the

thesis and its novel contributions. We reflect upon our application of machine

learning techniques to use TCP traces and the development of a scalable, auto-

mated diagnosis system for identifying UD problems and faulty links. We also

discuss further avenues of research, and future directions and possibilities that

arise from this work.
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CHAPTER TWO

AUTOMATED NETWORK
DIAGNOSTICS: AN OVERVIEW

This chapter provides a background to network diagnostic practices, common

methodologies, and tools found in the research literature. Figure 2.1 shows an

overview of the related work with a focus on combining machine learning (ML)

with TCP trace analysis-based inference. These works span several decades dating

back to the introduction and widespread popularity of TCP. There have been

numerous applications and tools built for various aspects of networking using

TCP, ML and combinations of the two. As indicated in the figure, there is a clear

research gap in harnessing the benefits of both TCP trace analysis and machine

learning for network soft-failure diagnosis. Investigation of the existing methods

reveals the limitations of the current state-of-the art in creating a scalable and

automated diagnostic system. This research gap provides the motivation for the

work presented in this thesis.

2.1 Defining detection and diagnosis

In general, detecting network faults and identifying the root causes is referred to

as network failure diagnosis.

Detection and diagnosis are not sharply separated in common speech. By the
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Figure 2.1: Overview of the related work found in the literature and the research
gap.

phrase“detecting a problem“ one often means two things: first, the confirmation

that there is a problem at all and second, the verification of the nature or type

of the problem itself. An example is to say that the Internet is slow because the

ISP is throttling the connection after exceeding the package usage limits. The

correct terminology in this example would be to say that an unusual behaviour

has been detected (i.e., the Internet is slower than what is usually expected) and

the diagnosis is that, for example, the ISP is throttling the connection speed due

to exceeded usage limits. Detecting that the Internet is slow does not necessarily

mean that there is a problem with the connection itself. Nevertheless, by simply

looking at the symptoms at a high level, it is impossible to tell if there is a serious

problem with the router, or the user must wait until the new billing cycle for

the ISP to re-establish guaranteed speeds. Therefore, if unusual behaviour is

detected, a more thorough diagnosis has to be conducted in order to find out if
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there is actually a problem and the root cause of it. Since the terms “detection“ and

“diagnosis“ often carry an implicit duality and appear to be over-used in common

speech, they must be precisely defined before being used in an engineering system.

Detection basically means to identify symptoms indicative of something un-

usual in the network performance. In the context of the proposed framework,

the detection happens at the user level when the user is experiencing less than

normal network quality. This may be a slower download or an interrupted video

stream. In most cases, users use widely-available on-line bandwidth and latency

estimation tools [38, 39] to confirm their suspicions.

Upon detecting a suspected issue, diagnosis means to investigate the root cause

of the detected symptoms. The output of the diagnosis may be that there is, in

fact, no problem at all. However, assuming that there was an underlying condition

causing the slow network, the output of the diagnosis will be the most likely cause.

Usually, after the diagnosis of the root cause is completed, certain corrective actions

must be performed in order to resolve the problem. Resolution of the faults and

the mechanisms to automate that process have their own associated complexities,

and this is an entirely different area of research. The broad range of challenges

in the resolution process warrants a detailed investigation and a comprehensive

automated solution. This is beyond the scope of the present research.

2.2 Detection and diagnosis of network failures

Failure diagnosis is one of the major challenges that home users and network

administrators face today. The problem is complex because there are various com-

ponents, which collaborate to realise a particular service, and these components

belong to different functional domains and physical locations. Troubleshooting

network problems can be a frustrating, expensive, and time-consuming experience.

Today’s networks are so complicated that the point of failure may be virtually any-
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where. Worse still, the network could contain multiple points of failure, resulting

in confusing symptoms that are hard to diagnose.

End-to-end delivery of a network service can be loosely divided into a number

of segments: the core and access networks, user devices and applications. The core

and access networks always belong to the ISP or organisation and user-devices

and applications in most cases belong to the end-user. Diagnosis of core and access

network problems has received much attention in the research community. The

main emphasis of past research has been on diagnosing problems in core, access

network components and back-end servers, since such issues can potentially affect

a large number of users [16, 17, 18]. In contrast, performance bottlenecks at UDs

have received little attention, mainly because of the complexities that arise with

the large variety of devices [19]. Furthermore, the assumption that problems at the

UDs typically impact only a small number of users has discouraged researchers

from creating UD-specific diagnostic applications. Nevertheless, recent studies

have found that many network problems occur at the UDs, and their accumulated

impact is far more significant than faults in the core networks [20].

2.2.1 Traditional practices - Hard failure diagnosis

Hard failures which result in total loss of connectivity are usually easier to detect.

Core and access networks are constantly checked with network monitoring sys-

tems (NMSs) [40, 41] to detect failures and performance issues. ISPs spend millions

of dollars and employ hundreds of engineers to investigate and resolve network

issues in the ISPs’ administrative domains. Resolution of a hard failure is normally

assisted by NMSs and systematic checking of network and pre-configured alarms

to pinpoint the exact point of failure. If the point of failure is at the user’s device

itself, there is no other option but to communicate with the user through other

channels to identify and resolve the device failure. This process is comparatively

straight-forward and difficult to replace with automated systems, particularly
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when diagnosing hard failures in UDs.

2.2.2 Traditional practices - Soft failure diagnosis

In comparison, soft failures, which manifest as degraded network performance

or the loss of network bandwidth, are harder to detect and diagnose [5, 6, 7, 8].

Diagnosing soft failures often requires experienced network engineers and time-

consuming investigations to methodically eliminate each segment of the network

as a potential cause until the exact problem is detected. These manual investiga-

tions of possible network bottlenecks are expensive, and in many cases, the costs

are only justified in a core network or an access network affecting hundreds or

thousands of users. Although problems in UDs have been found to be a major

bottleneck, very little attention has been given to resolving these issues. Tradition-

ally, resolving soft failures is a function of customer support or IT support, and

involves an escalation process starting from a call centre operative who conduct

limited initial testing. The process escalates depending on the complexity, and

typically concludes with senior engineers spending valuable time investigating

and resolving the issue [42].

In IT services environments, the problem management process (defined, for ex-

ample, in Information Technology Infrastructure Library - ITIL [43]) describes the

steps by which problems are reported, diagnosed, and solved. A typical sequence

is for a problem ticket to be opened by a call to the customer help-desk, or by an

alert generated by a monitoring system. This is followed by some basic diagnosis

by first-level support personnel based on, for example, well-documented proce-

dures. Simple issues such as incorrect network interface settings can generally

be handled here without progressing further. If the problem needs additional

investigation, it is passed to second-or third-level personnel, who are typically

system administrators or service engineers with more advanced skills and knowl-

edge. They often start with vague or incomplete descriptions of problems (e.g.,
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“Application is running very slowly,“ or “Web pages are not loading fast enough“)

which require significant investigation before the cause and solutions are found.

In the context of high-level support, administrators often consult monitoring tools

that provide some specific system indicators, and then log in to the server to collect

additional detailed information using system utilities. In day-to-day problem

management, this investigative process is often the most time-consuming and

expensive task for engineers. It is difficult to automate, and requires field expe-

rience and expert knowledge. Unlike the first-level support protocols, there is

hardly any well-documented procedure one can refer to during this advanced

problem-management process. Engineers usually rely on their own knowledge

and experience to diagnose the root cause of the problem. Because of the com-

plexity of the problems, it is a significant challenge and overhead to create useful

documentation about this process which can be used by others. Particularly in an

environment where support teams are globally distributed, the creation and shar-

ing of this knowledge is a major challenge. Such challenges could lead to human

error and consequently large-scale mis-diagnosis when appropriate training and

skills are not in place.

Providing the highest quality of support at the first point of contact is pro-

hibitively expensive and has become a major source of customer dissatisfaction.

In enterprise and office environments, prolonged delays in soft-failure resolution

result in losses in productivity, under-utilised network resources, and employee

frustration [25].

2.3 Anomaly detection

With the increasing complexity of the networks and ever-increasing user expec-

tations, the traditional practices are becoming obsolete, expensive, and counter-

productive. The automatic identification of anomalies in the behaviour of network
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infrastructures as a means to automate network diagnosis is an area that has

recently aroused significant interest in both the commercial and research commu-

nities. Detecting the existence of an anomaly and its nature is the most complex

task in network soft failure diagnosis. A comprehensive diagnostic application

requires functionality that goes beyond simply detecting anomalies to identify

the exact anomaly and the associated root causes. Once detected, the unique

identification of the faults requires extending the anomaly detection to pattern

identification. However, in the research literature, these two concepts are tightly

interwoven and in most cases, difficult to differentiate. A review of the existing

landscape of anomaly detection techniques provides the best starting point in

identifying the best avenues to the development of a comprehensive automated

network diagnostic application. Furthermore, the anomaly detection techniques

discussed in this section are the foundation of most inference-based applications

shown in Figure 2.1.

Anomalies are defined as patterns in data that do not conform to a well-defined

x

y

N1

N2

o1

o2

O3

Figure 2.2: A simple example of anomalies in a 2-dimensional data set.
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notion of normal behaviour [44]. Hence, the problem of anomaly detection in any

system implies the existence of a concept of normality. The notion of “normal“

is usually provided by a formal model that expresses the relations between the

fundamental variables involved in the system dynamics. Consequently, an event

is catalogued as anomalous because its degree of deviation in relation to the profile

of characteristic behaviour of the system, specified by the model of normality, is

sufficiently high. Figure 2.2 illustrates anomalies in a simple 2-dimensional data

set. The data set has two normal regions, N1 and N2, since most observations lie

in these two regions. Points that are sufficiently far away from the regions, e.g.,

points o1 and o2, and points in region O3, are anomalies.

2.3.1 Network attributes for defining models

Like many other systems, a network is a complicated assembly of components with

complex relationships that can be studied from several points of view. Defining

ordinary behaviour in the context of an entire network could lead to failure. When

the problem of anomaly detection is posed within this context, it is necessary

to determine which network attributes, or facets, the normal behaviour model

refers to. Thus, detectors can be classified according to the particular aspect being

modelled. Network attributes used to create anomaly detection models can be

classified in accordance with the organisation provided by the scheme shown in

Figure 2.3.

Network traffic flow

Traditionally, traffic has been the unique network-related aspect addressed by

detection systems. The method that obtains models of normality by analysing

network traffic is termed “flow analysis“ (see Figure 2.3), and is characterised by

the study of the temporal evolution of several measures related to traffic flows.

As example, Cleveland et al. [45] identified packet flows by capturing the IP
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Figure 2.3: Network attributes used to create models in anomaly detection.

headers of a select set of packets at different points in the network, while Caceres

et al. [46] and Aukia et al. [47] used link-level information captured at the routers

to determine flow levels and utilisation. These types of flow level characteristics

have been extensively used in anomaly detection, especially in network security

and traffic classification. For example, Cabrera et al. [48] used the total number of

connections initiated during a given time interval as a measure to classify traffic

flows in detecting denial of service (DoS)-type network attacks. Zhang et al. [49]

introduced a multi-dimensional box plot method for short-time scale traffic (MBST)

which aimed to detect many types of hidden network attacks by observing how

traffic features changed over time. In traffic classification, many authors, including

Hong et al. [50], John et al. [51], and Dahmouni et al. [52], have used network traffic

flow analysis as a method for identifying traffic types and anomalous behaviour.

Flow analysis usually requires sophisticated network sampling techniques

for packet filtering as well as specialised hardware at the network devices to

do IP packet lookup and capture. Although the data obtained from the traffic

flow method is a rich source of information for network diagnosis, the hardware

requirements for this measurement method make it difficult to use in practice.
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Protocol analysis

Network protocols are one of the fundamental pieces of networking, as they are the

foundation of all information interchange throughout the network. Each protocol

is carefully designed to support a specific facet of the communication process, so

that devices and applications use it according to an established set of formal rules.

Nevertheless, protocol specifications usually suffer ambiguities that enable use

in several ways that go beyond those for which they were developed, resulting

in severe security implications. In addition to this, some implementations are not

fully in conformity with the recommendations (for example, a list of common

implementation problems in TCP is provided in RFC-2525 [53]).

In order to detect protocol anomalies, several approaches have focused on the

modelling of protocol usages [54, 55, 56]. From this point of view, it is possible to

classify systems according to the network layer modelled:

1. Data link (Ethernet, token ring, etc.)

2. Network (IP in most cases)

3. Transport/Control (TCP, UDP, RTP, ICMP, etc.)

4. Application (HTTP, DNS, Telnet, FTP, SSH, POP, SMTP, etc.)

Network management protocols provide information about network traffic

statistics. These protocols support variables that correspond to traffic counts at

the device level. This information from the network devices can be passively

monitored. The information obtained may not directly provide a traffic perfor-

mance metric, but can be used to characterise network behaviour and, therefore,

can be used for network anomaly detection. Using this type of information re-

quires the cooperation of the service provider’s network management software

and more importantly, may require privileged access to user devices. However,
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these protocols provide a wealth of information that is available at fine granu-

larity. Simple network management protocol (SNMP) is a such protocol which

provides a mechanism to communicate between the manager and the agent. The

SNMP manager can collect management data that is provided by the SNMP agent,

but does not have the ability to process this data. The SNMP server maintains

a database of management variables called the management information base

(MIB) variables [57]. Every network device has a set of MIB variables that are

specific to its functionality. MIB variables are defined based on the type of device

as well as on the protocol level at which it operates. For example, bridges, that

are data-link layer devices, contain variables that measure link-level traffic infor-

mation. Routers that are network-layer devices, contain variables that provide

network-layer information. These variables contain information pertaining to the

different functions performed by the network devices. Although this is a valuable

resource for network management, we are only beginning to understand how this

information can be used in problems such as failure and anomaly detection [16].

Network Probes

Network probes are specialised tools such as ping and traceroute [18] that can be

used to obtain specific network parameters such as end-to-end delay and packet

loss. Probing tools provide an instantaneous measure of network behaviour. These

methods do not require the cooperation of the network service provider. However,

it is possible that service providers could choose not to allow ping traffic through

their firewall. Furthermore, the specialised IP packets used by these tools need not

follow the identical trajectory or receive the same treatment by network devices as

do the regular IP packets. This method also assumes the existence of symmetric

paths between given source-destination pairs. On the Internet, this assumption

cannot be guaranteed. Therefore, performance metrics derived from such tools can

provide only a coarse-grained view of the network. As a result, the data obtained
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from probing mechanisms may be of limited value for the purpose of anomaly

detection.

In addition to these attributes, other network features such as topology, systems

logs [58], user reports, and mixtures [59, 36] of the above may be features in a

network diagnostic system.

2.3.2 Analysis scale

Although it is not always well identified, the notion of scale of analysis is implicit

in every anomaly detection method proposed to date. In order to achieve our

objective of obtaining accurate models of the normality of a network, deep com-

prehension of the phenomena involved in its dynamics is required. Nevertheless,

there are several points of view, or dimensions, from which to carry out such a

study.

In the research literature on network anomaly detection, three analysis lev-

els can be clearly defined. These analysis levels dictate the kind of detectable

anomalies and the types of application in which they could be used.

1. Microscale - Methods based on the analysis of low-level features. According

to the feature modelled, examples of low scales of analysis are:

• Analysis of individual packets, in the case of protocol analysis.

• Traffic analysis during short periods of time (e.g. < 1s).

• Traffic analysis destined to a specific service within a host.

2. Mesoscale - Methods based on the analysis of medium-level features. Ac-

cording to the feature modelled, examples of medium scales of analysis

are:

• Analysis of connections or packet streams.

• Traffic analysis from several seconds to minutes.
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• Analysis of traffic destined to a specific host within the network

3. Macroscale - Methods based on the analysis of high-level features. According

to the feature modelled, examples of high scales of analysis are:

• Simultaneous analysis of several connections and event correlation

within the whole network.

• Traffic analysis during hours, days, months, and so on.

• Traffic analysis across all the hosts within the whole network.

The notion of scale can be identified when traffic analysis or protocol analysis is

used for anomaly detection. For an example, the inspection of individual packets

can be viewed as a low-scale analysis, in contrast to the study of packet streams

(medium scale), or even the simultaneous evaluation of different connections

within the whole network (high scale).

The importance of the scale of analysis in anomaly detection methods lies in

the fact that some anomalies are only observable at certain scales. In a diagnostic

application, it is also important to consider the inherent requirements of identifying

large-scale problems versus user-level problems.

2.4 Characterising network behaviour for fault diag-

nosis

The previous section discussed the network attributes and scales that can be used

for anomaly detection. This section discusses how those attributes have been

utilised to characterise the behaviour of the network towards creating a “signature“

of the anomaly. These signatures can be used to uniquely identify the anomaly

and provide the basis of our proposed system.

There are numerous network applications that create signatures for automated
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identification. These applications include: (i) online traffic classification and

flow identification [60, 61, 62, 52, 63, 64, 65, 66, 67], (ii) traffic monitoring [68, 69],

(iii) intrusion and attack detection [70, 49, 71, 72], (iv) source identification and

system fingerprinting [73, 61, 74, 75], (v) connectivity failure detection [76, 77,

33, 42], and (vi) soft-failure detection [36, 16, 78, 79, 80]. Table 2.1 has a critical

comparison of such signatures and their limitations for UD diagnosis.

Network signatures generated from flow-based characteristics have been com-

monly used in online traffic classification and flow identification. Roughan et

al. [81] used traffic flow data such as flow duration, bytes per second and packet

size collected through passive measurement of traffic flows for QoS mapping in IP

traffic. In contrast, Nguyen et al. [63] proposed an IP traffic classification technique

based on short sub-flow features such as inter-packet arrival interval, inter-packet

length variation and IP packet length instead of full flow characteristics. But et

al. [67] used derived flow characteristics such as ratio between BitTorrent packets

to total packets within a flow, ratio of small status packets to total packets, ratio

of data packets to total packets and payload size standard deviation to identify

BitTorrent traffic. In an another application, Branch et al. [66] have used mean

packet length, autocorrelation and the ratio of data transmitted in either direction

of a bi-directional flow to identify variable rate VoIP traffic flows.

Taku et al. [82], Hajji [68], and Thottan et al. [16] have used signatures created

using IP flow related MIB variable data, number of various types of packets,

number of TCP connection requests, port numbers, packet size sequence and

traffic throughput in network fault detection and Zhang et al. [49] in intrusion-

detection systems. These applications mainly aim to raise alarms when the overall

traffic flow pattern in the network shows abnormalities. Flow-based signatures

created in above studies have been designed for passive monitoring applications

and fundamentally unsuitable for a UD diagnosis application that runs on-demand

when a user is experiencing a network performance problem. The signatures are
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limited due to the small number of features that have been selected with the

knowledge of the specific behaviour being detected. A scalable characterization of

network faults using a single signature however requires a much broader feature

set as different faults can impact different subsets of features which we have no

way of pre-determining.

Another common approach when creating signatures for diagnostic purposes

is to use the system logs from the device itself, or the “reports” compiled by the

user. Both Aggarwal et al. [36] and Reidemeister et al. [77], for example, created

signatures incorporating internal system logs, while Sihyung et al. [20] used user-

reports to build the fault signatures. The use of the system logs not only raises

privacy concerns in a public network, but also requires the network operators to

gain privileged access to the UDs. Although practical for expert users, reports from

average users with no specific network knowledge can be unreliable. Although

system logs and user reports can provide valuable information to enrich the fault

signatures, we believe the challenges with privacy, reliability, and scalability far

outweigh the benefits such signatures offer to a diagnosis system.

Communication protocols are another common source of information to create

network signatures. As shown in Table 2.1, popular protocols such as IP, TCP, UDP,

and HTTP are often used as they are supported by most devices. While Dahmouni

et al. [52], Manikopoulos et al. [70], and Wolfgang [74] extract features from

multiple protocols, some studies such as by Gomes [73] and Chen et al. [72] have

limited their features to a single protocol. These proposed signatures have been

created to detect very specific network phenomena, and the features have been

chosen with prior knowledge of how each event affects the features. Consequently,

the signatures are limited to a handful of features. In the case of UD soft-failure

diagnosis, the signatures must be able to effectively and uniquely characterise

not only large numbers of faults, but also any new types of faults. Hence, such

signatures with limited feature sets can affect the ability to capture the information
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needed to generalise the signatures.
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The source of information for the signature, attributes or features, collection

methods, and portability of signatures across networks vary with the particular

application of the signature. Consequently, many of the signatures in the literature

do not offer a comprehensive method for characterising UD soft failures. Table 2.1

shows a summary of different types of network signatures and their limitations

in the context of UD, soft-failure characterisation, especially for utilisation in

an automated, scalable system. Furthermore, most of these studies train and

evaluate their systems using duplicate data sets or data collected at the same

network location with little diversity. This overlooks the effects that the network

can have on the signature. Therefore, we propose a more comprehensive signature

to characterise UD failures and analyse how different network properties affect

such a signature.

2.5 Complexity reduction

This sub-section presents a summary of the different types of dimensionality

reduction techniques used by other researchers, and their limitations. Network

signatures generated from flow-based characteristics for traffic classification such

as those proposed by Zhang et. al. [49] contain large amounts of data as they are

collected from one of China’s seven major backbone networks. The complexity of

their dataset was reduced by simply capturing packet headers, which surprisingly

still contain excessive amounts of data for a whole day. For further complexity

reduction, each day is divided into 24 hours, and data is only captured in the first

minute of each hour. Due to the on-demand requirement, this reduction method is

deemed unsuitable for our application.

Clustering algorithms are commonly used in reducing the complexity of a large

data set. Vaarandi et al.proposed a density-based approach for clustering [83] to

reduce the amount of data (signatures from system log files) required by a support
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person to evaluate the behaviour of the system. In density-based clustering,

clusters are usually defined as areas of higher density than the remaining data set.

The algorithm has three steps; (i) data summation, (ii) building cluster candidates,

using the summary information collected, and (iii) cluster selection based on the

candidates. This method not only clusters data into regions based on frequent

patterns from the log files, but also extracts the static parameters that are unique

to the system.

In other domains, Fisher’s Linear Discriminant (FLD) [84] is used to reduce

the dimensionality of image data sets. This method is also very versatile in

overcoming inconsistencies and variances in an image (e.g. lighting variations in

facial recognition). FLD provides linear class separation in huge data sets, which

helps to simplify the classification process.

2.6 Methods of anomaly detection and diagnosis

In this section, we review the most commonly-used network anomaly detection

methods and automated diagnosis techniques. Using the models created on

the basis of previously discussed attributes, these methods provide the basis for

detecting anomalous from normal behaviour and identifying the anomalies.

Figure 2.4 shows the most common methods of anomaly detection, such as

expert rule-based approaches, signal processing and statistical analysis methods,

and machine learning-based techniques. Many existing network-related applica-

tions use these techniques to detect abnormalities from the expected behaviour,

although slight modifications in these techniques are often needed when adopting

them to uniquely identify the anomaly.
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2.6.1 Expert rule (specifications)-based systems

Early work in the area of network fault or anomaly detection was based on ex-

pert systems. In expert systems, an exhaustive database containing the rules or

specifications of behaviour of the faulty system is used to determine if a fault

occurred [85, 86, 87, 88]. Rule-based systems are too slow for real-time applica-

tions and are dependent on prior knowledge about the fault conditions on the

network [89]. The identification of faults in this approach depends on symptoms

that are specific to a particular manifestation of a fault. Examples of these symp-

toms include excessive utilisation of one packet type, the number of open TCP

connections, and total throughput exceeded. These rule-based systems rely heavily

on the expertise of the network manager and do not adapt well to the evolving

network environment. Thus, it is possible that entirely new faults may escape

detection.

Specifications or rules are provided by using any kind of formal tool or through

manual coding. For example, finite state machines [90] model alarm sequences

that occur during and prior to fault events. A probabilistic finite state machine

Figure 2.4: Methods of network anomaly detection.
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model is built for a known network fault using history data. State machines are

designed with the intention of not just detecting an anomaly but also possibly

identifying and diagnosing the problem. The sequence of alarms obtained from the

different points in the network is modelled as the states of a finite state machine.

The alarms are assumed to contain information such as the device name as well

as the symptom and time of occurrence. The transitions between the states are

measured using prior events [91, 92, 93].

In [87], the authors describe an expert system model using fuzzy cognitive

maps to overcome this limitation. Cognitive maps can be used to obtain an intelli-

gent modelling of the propagation and interaction of network faults. Case-based

reasoning is an extension of rule-based systems [88]. It differs from fuzzy cognitive

maps in that, in addition to only rules, a picture of previous fault scenarios is used

to make the decisions. A picture here refers to the circumstances or events that led

to the fault. In order to adapt the case-based reasoning scheme to the changing

network environment, adaptive learning techniques are used to obtain the func-

tional dependence of relevant criteria, such as network load, collision rate, etc., to

previous trouble tickets [94]. The trouble-ticketing system is used to perform two

functions: prepare for problem diagnostics through filtering; and infer the root

cause of the problem. Using case-based reasoning for describing fault scenarios

also suffers from its heavy dependence on past information. Furthermore, the

identification of relevant criteria for the different faults will, in turn, require a set

of rules to be developed. In addition, using any functional approximation scheme,

such as back propagation, causes an increase in computation time and complexity.

The number of functions to be learned also increases with the number of faults

studied.
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2.6.2 Statistical analysis

As the network evolves, each of the methods described above requires significant

recalibration or retraining. However, using statistical approaches, it is possible

to continuously track the behaviour of the network. Statistical analysis has been

used to detect both anomalies corresponding to network failures [95], and net-

work intrusions [96]. Interestingly, both cases make use of the standard sequential

change point detection approach. The flooding detection system, proposed in [96],

uses measured network data that describes TCP operations to detect SYN flooding

attacks. In [95] the author used SNMP MIB variables with varying statistical char-

acteristics to design a failure detection system that looks for sequential changes in

time-series data using the non-parametric cumulative sum (CUSUM) method [97].

In [16] the author introduced a statistical signal processing technique based on

abrupt change detection in MIB variables by assuming traffic variables are quasi-

stationary. At the same time, the performance of most statistical analysis-based

methods requires methods to quantify the bursty behaviour of the variables to

increase the optimality of statistical methods.

2.7 Machine learning

Machine learning (ML) is a branch of artificial intelligence, and concerns the

construction and study of systems that can learn from data. In network anomaly

detection and fault diagnosis, constructing models of the normal behaviour of

a system consists of observing the system while it is working under normal

conditions, and applying machine-learning techniques in order to obtain a model

that: (i) explains, by means of a simple representation, the amount of data

observed; and (ii) is able to extrapolate to other, non-observed situations. ML can

also be used to create models of the anomalies using existing anomaly data, which

could then be used to uniquely identify the anomaly in an automated system.
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Many different types of models exist for ML and Figure 2.5 shows an overview of

some of the common techniques.

2.7.1 Supervised machine learning

Supervised learning is the ML task of inferring a function from labelled training

data. The training data consist of a set of training examples. In supervised

learning, each example is a pair consisting of an input object (typically a vector)

and a desired output value (also called the supervisory signal). A supervised

learning algorithm analyses the training data and produces an inferred function,

which can be used for mapping new examples. An optimal scenario will allow

for the algorithm to correctly determine the class labels for unseen instances. This

requires the learning algorithm to generalise from the training data to unseen

situations in a “reasonable“ way.

Statistical methods

Most basic methods of supervised ML are based on statistical methods for con-

structing probabilistic data models through the use of applied statistics and prob-

ability theory. Statistical techniques fit a statistical model (usually for normal

behaviour) to the given data and then apply a statistical inference test to determine

if an unseen instance belongs to this model or not. Instances that have a low prob-

ability to be generated from the learnt model, based on the applied test statistic,

are declared as anomalies. For example, detecting outliers based on regression

analysis, especially reverse search, and direct search [98] can be considered a rela-

tively straight-forward statistical technique. More advanced regression methods

based on support vector regression and particle swarm optimisation algorithms

are given in [99] for pattern analysis of network intrusion detection. [100] and [48]

also use statistical model-based anomaly detection to identify network intrusions.

The first study uses a user-activity monitor as the source of information, while the
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Figure 2.5: Comparison of machine learning algorithms.

second study uses a network traffic model.

Classification-based methods

Classification [101, 102] is used to construct a model (classifier) from a set of

labelled data instances (training), and then classify a test instance into one of the

classes using the learnt model (testing). Classification-based anomaly detection

techniques operate in a similar two-phase fashion. The training phase learns a

classifier using the available labelled training data. The testing phase classifies

a test instance as normal or anomalous using the classifier. Classification-based

anomaly detection techniques operate under the general assumption that normal

and anomalous classes can be learnt in the given feature space.

Based on the labels available for the training phase, classification-based anomaly

detection techniques can be grouped into two broad categories: multi-class and

one-class anomaly detection techniques. Multi-class classification-based anomaly

detection techniques assume that the training data contain labelled instances be-

longing to multiple normal classes [103, 104]. Such anomaly detection techniques
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construct a classifier to distinguish between each normal class against the rest of

the classes. One-class classification-based anomaly detection techniques assume

that all training instances have only one class label. Such techniques construct a

discriminative boundary around the normal instances using a one-class classifi-

cation algorithm, e.g., one-class support vector machines (SVMs) [105], one-class

kernel Fisher discriminants [106].

Decision tree-based approaches

These approaches begin with a set of cases or examples, and create a tree data

structure that can be used to classify new cases. Each case is described by a set of

attributes (or features) that can have numeric or symbolic values. Associated with

each training case is a label representing the name of a class. Each internal node of

the tree contains a test, the result of which is used to decide what branch to follow

from that node. For example, a test might ask “is x > 4 for attribute x ? “. If the

test is true, then the case processes down the left branch, and if not it follows the

right branch. The leaf nodes contain class labels instead of tests. In classification

mode, when a test case (which has no label) reaches a leaf node, a decision tree

method such as C4.5 [107] classifies it using the label stored there. While decision-

trees [108] are not always the most competitive classifiers in terms of prediction,

they enjoy the crucial advantage of yielding human-interpretable results, which is

important if the method is to be adopted by actual network operators.

Decision trees were commonly used in network-related machine learning in the

early days. In [29] and [109], the authors used a decision-tree learning approach

based on C4.5 and Min Entropy for diagnosing failures in large Internet sites.

Other researchers [36] also used C4.5 and proposed “NetPrints“, a system that

leverage shared knowledge in a population of users to diagnose and resolve

misconfiguration in home networks, while [110] proposed a TCP throughput

prediction system. These studies showed decision trees are successful when the

feature set is limited. However, their drawbacks are their time complexity and

43



they tend to produce false positives when working with larger feature sets and

noisy samples.

Perceptron-based techniques

These well-known classification algorithms are based on the notion of percep-

tron introduced in [111]. A single layered perceptron can be briefly described

as follows: If x1 through xn are input feature values and w1 through wn are con-

nection weights/prediction vectors (typically real numbers in the interval [-1, 1]),

then perceptron computes the sum of weighted inputs:
∑
i

xiwi and output goes

through an adjustable threshold: if the sum is above the threshold, the output is 1;

otherwise, it is 0. These are called “single-layered perceptrons“

Perceptrons can only classify linearly-separable sets of instances. If a straight

line or plane can be drawn to separate the input instances into their correct cate-

gories, input instances are linearly separable and the perceptron will find the solu-

tion. If the instances are not linearly separable, learning will never reach a point

where all instances are classified appropriately. Multi-layered perceptrons (artifi-

cial neural networks) have been created to try to solve this problem [112]. [113, 114]

provide an extensive survey of existing work in artificial neural networks (ANNs)

and our discussion is limited to the basics of ANN and and their use in network-

related applications.

A multi-layer ANN consists of a large number of units (neurons) joined together

in a pattern of connections. Units in a net are usually segregated into three classes:

input units, which receive information to be processed; output units, where the

results of the processing are found; and units in between known as hidden units.

Generally, correctly determining the size of the hidden layer is a problem, because

an under-estimate of the number of neurons can lead to poor approximation and

generalisation capabilities, while excessive nodes can result in over-fitting and

eventually make the search for the global optimum more difficult [115].

ANN depends upon three fundamental aspects: the input and activation
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functions of the unit, the network architecture, and the weight of each input

connection. Given that the first two aspects are fixed, the behaviour of the ANN

is defined by the current values of the weights. The weights of the net to be

trained are initially set to random values, and then instances of the training set are

repeatedly exposed to the net. The values for the input of an instance are placed on

the input units, and the output of the net is compared with the desired output for

this instance. All the weights in the net are then adjusted slightly in the direction

that would bring the output values of the net closer to the values for the desired

output. There are several algorithms with which a network can be trained [116].

However, the most well-known and widely-used learning algorithm to estimate

the values of the weights is the back propagation (BP) algorithm [117].

ANNs have been applied to anomaly detection in multi-class as well as one-

class settings. A basic multi-class anomaly detection technique using ANN oper-

ates in two steps. First, an ANN is trained on the normal training data to construct

the different normal classes. Second, each test instance is provided as an input to

the ANN. If the network accepts the test input, it is normal, and if the network

rejects a test input, it is an anomaly. In addition, ANNs can also be trained using

pre-identified anomaly data with correct labelling. The trained ANN can then be

used to identify the exact anomaly in a subsequent setting to provide the root cause

diagnosis. ANN has been commonly used in intrusion-detection systems (IDSs)

where anomalous network behaviour is detected [118, 119]. In [120], the author

proposed an ATM network controller that uses ANN for learning the relations

between the offered traffic and service quality. ANN can also be used to detect

fingerprints hidden in network traffic, as demonstrated in [121], where ANN was

used for remote OS identification.

A radial basis function (RBF) network is a special form of three-layer feedback

ANN that uses radial basis functions at each of the hidden units as activation

functions. Each of the output units implements a weighted sum of hidden unit
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outputs. RBF networks have also been widely applied in many engineering

fields [122] and have often been used in network IDS-related applications [123,

124, 125].

Support Vector Machines

Support vector machines (SVMs) are one of the newest supervised machine

learning techniques [126]. An excellent survey of SVMs can be found in [127], and

a more recent book is by Christianini et al. [128]. Therefore, in the present study,

apart from a brief description of SVMs, we will refer to some more recent studies

and the landmarks published before these.

SVMs revolve around the notion of a “margin“ either side of a hyperplane

that separates two data classes. Maximising the margin, and thereby creating the

largest possible distance between the separating hyperplane and the instances

on either side of it, has been proven to reduce the upper bound on the expected

generalisation error. In the case of linearly-separable data, once the optimum

separating hyperplane is found, data points that lie on its margin are known as

support vector points and the solution is represented as a linear combination of

only these points. Other data points are ignored. Therefore, the model complexity

of an SVM is unaffected by the number of features encountered in the training data

(the number of support vectors selected by the SVM learning algorithm is usually

small). For this reason, SVMs are well suited to dealing with learning tasks where

the number of features is large with respect to the number of training instances.

2.7.2 Hard-Margin linear SVM

Let n m-dimensional training inputs xi (i = 1, ..., n) belong to Class 1 or 2 and the

associated labels be yi = +1 for Class 1 and yi = −1 for Class 2. If the training data
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are linearly separable, then a pair (w,b) exists such that

wTxi + b ≥+1 for yi = +1, (2.1a)

wTxi + b ≥−1 for yi = −1, (2.1b)

with the decision function given as

D(x) = wTxi + b (2.2)

for i = 1, ..., n where, w is the m-dimensional weight vector, b is the bias term.

The hyperplane

D(x) = wTxi + b = c for −1 < c < +1 (2.3)

forms a separating hyperplane that separates xi (i = 1, ..., n) into Class 1 and 2.

When c =0, the separating hyperplane is in the middle of the two hyperplanes with

c = 1 and -1. The distance between the separating hyperplane and the training

datum nearest to the hyperplane is called the margin. As shown in Figure 2.6, there

is an infinite number of decision functions that satisfy (2.1). The hyperplane with

the maximum margin is called the optimal separating hyperplane (see Figure 2.6).

The optimal separating hyperplane is obtained by minimising

Q(w) =
1

2
wTw (2.4)

with respect to w and b subject to the constraints

yi(wTxi + b) ≥ 1 for i = 1, ..., n (2.5)

which is a quadratic programming (QP) problem [129]. For linearly separable data,

the data points that lie on its margins are known as support vectors.
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Figure 2.6: Hard-margin SVM

Even though the maximum margin allows the SVM to select among multiple

candidate hyperplanes, for many datasets, the SVM may not be able to find any

separating hyperplane at all because the data contains misclassified instances. This

problem can be addressed by using a soft margin that accepts some misclassifica-

tion of the training instances [130].

Most real-world problems involve non-separable data for which no hyper-

plane exists that successfully separates the positive from negative instances in

the training set. One solution to the inseparability problem is to map the data

onto a higher-dimensional space and define a separating hyperplane there. This

higher-dimensional space is called the “transformed feature space“, as opposed

to the input space occupied by the training instances (see Figure 2.7). With an

appropriately chosen transformed feature space of sufficient dimensionality, any

consistent training set can be made separable. A linear separation in transformed
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Figure 2.7: Kernel mapping from input space to feature space for creating a
complex separating hyper surface between the classes

feature space corresponds to a non-linear separation in the original input space.

The mapping from the input space to the transformed feature space is performed

by “kernel functions“, which are a special class of function that allow inner prod-

ucts to be calculated directly in feature space, without performing the mapping

described above [131]. Once a hyperplane has been created, the kernel function

is used to map new points into the feature space for classification. The selec-

tion of an appropriate kernel function is important, since the kernel function

defines the transformed feature space in which the training set instances will be

classified [132].

SVMs have been applied to anomaly detection in one-class settings with kernels

such as RBF kernels. This technique has been commonly used in IDS [133, 134, 135].
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Network traffic classification is another application of SVMs. In Mantia et al. [136]

and Este et al. [137], the authors performed TCP traffic classification using SVM,

and Miaza et al. [138] used SVM-based learning for encrypted traffic classification.

SVMs have also been used in automated computer system diagnosis using system

traces [37], and for TCP throughput prediction [139] by support vector regression

(SVR) [140].

Statistical classification - Bayesian Networks

In contrast to ANNs and SVMs, statistical approaches are characterised by

having an explicit underlying probability model, which provides a probability

that an instance belongs in each class, rather than simply a classification. Bayesian

networks (BNs) are the most well-known representative of statistical learning al-

gorithms [141]. A BN is a graphical model that encodes probabilistic relationships

among variables of interest. The interesting feature of BNs, compared to decision

trees, ANNs, or SVMs, is certainly the possibility of taking into account prior

information about a given problem, in terms of the structural relationships among

its features [142].

Naive Bayesian (NB) networks are very simple BNs which are composed

of directed acyclic graphs with only one parent (representing the unobserved

node) and several children (corresponding to the observed nodes), with a strong

assumption of independence among child nodes in the context of their parent [143].

The assumption of independence among child nodes is clearly almost always

wrong, and for this reason, naive Bayes classifiers are usually less accurate than

other more sophisticated learning algorithms such as ANNs. The major advantage

of the naive Bayes classifier is its short computational time for training [144].

Several researchers have adapted ideas from Bayesian statistics to create mod-

els for anomaly detection. For example, Peng et al. [145] and Valdes et al. [146]

developed an anomaly detection system that employed BNs to perform intrusion

detection for cyber security using NB networks. BNs have also been used as a

50



method for packet loss detection in TCP [147] and in [148] the authors introduced

BARD, a method of network management using BNs. BN-based classifiers have

also been used in network traffic classification, with Hong et al. [50] using BN for

TCP flow classification and Agrawal et al. in [149] using BN to limit the bandwidth

of spam flows. BNs can also be used as predictor algorithms (regression). Tariq et

al. [150] introduced the What-If Scenario Evaluator (WISE), a BN-based tool that

predicts the effects of possible configuration and deployment changes in content

distribution networks. In [151], the authors demonstrate how NB classifiers can

be used for automated diagnosis in mobile UMTS networks, and in [152], a com-

parison of BN diagnosis systems shows that a Bayesian classifier with continuous

variables outperforms discrete variables in limited training set scenarios.

2.7.3 Unsupervised machine learning

In machine learning, the problem of unsupervised learning is that of trying to

find hidden structure in unlabelled data. Since the examples given to the learner

are unlabelled, there is no error or reward signal to evaluate a potential solution.

This distinguishes unsupervised learning from supervised learning. Unsupervised

classification, or clustering, has the advantage of grouping instances with similar

properties and so simplifies the data [153]. Rather than forcing a set of classes onto

the data set, an unsupervised classification scheme will reflect natural clusters in

the data. This can be useful for finding novel or interesting features in the data

that would not otherwise be found.

Statistical methods

These approaches have been developed from the view-point of statistical learning

theory. They attempt to detect outliers in an on-line process through the unsu-

pervised learning of a probabilistic model of the information source. A score is

given to an input based on the learned model, with a high score indicating a high
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possibility of being a statistical outlier. An off-line process of outlier detection uses

batch detection, in which outliers can be detected only after seeing the entire data

set. The on-line setting is more realistic than the off-line one when dealing with

the vast amount of data in network monitoring. An example of such a method is

“SmartSifter“ (SS) [154].

Proximity-based approaches (Nearest neighbour)

The concept of nearest neighbour analysis has been used in several network

anomaly-detection techniques. Such techniques are based on the key assumption

that normal data instances occur in dense neighbourhoods, while anomalies occur

far from their closest neighbours.

One of the most basic nearest neighbour techniques, k-Nearest Neighbour

(kNN) is based on the principle that the instances within a dataset will generally

exist in close proximity to other instances that have similar properties [155]. If the

instances are tagged with a class label, then the value of the label of an unclassified

instance can be determined by observing the class of its nearest neighbours. The

kNN locates the k nearest instances to the query instance and determines its

class by identifying the single most frequent class label. In general, instances can

be considered as points within an n-dimensional instance space, where each of

the n-dimensions corresponds to one of the n-features that are used to describe

an instance. The absolute position of the instances within this space is not as

significant as the relative distance between instances.

This relative distance is determined by using a distance metric. Ideally, the dis-

tance metric must minimise the distance between two similarly classified instances,

while maximising the distance between instances of different classes. Distance (or

similarity) between two data instances can be computed in different ways. For

continuous attributes, Euclidean distance is a popular choice, but other measures

can be used [101]. For categorical attributes, a simple matching coefficient is often
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used, but more complex distance measures can be used [156]. For multivariate

data instances, distance or similarity is usually computed for each attribute and

then combined [101].

Clustering-based approaches

Cluster analysis or clustering is the task of grouping a set of objects in such a way

that objects in the same group (called a cluster) are more similar (in some sense,

or another) to each other than to those in other group’s (clusters) [157, 158, 159].

Cluster analysis itself is not one specific algorithm, but the general task to be solved.

It can be achieved by various algorithms that differ significantly in their notion

of what constitutes a cluster and how to efficiently find them. Popular notions of

clusters include groups with small distances between the cluster members, dense

areas of data space, intervals, or particular statistical distributions. Some of the

main categories of clustering algorithms are as follows:

Connectivity-based clustering (Hierarchical clustering)

Connectivity-based clustering, also known as hierarchical clustering, is based

on the core idea of objects being more related to nearby objects than to objects

farther away [160]. Hierarchical clustering aims to obtain a hierarchy of

clusters, called a dendrogram, that shows how the clusters are related to each

other. These methods proceed either by iteratively merging small clusters

into larger ones (agglomerative algorithms, by far the most common) or by

splitting large clusters (divisive algorithms). When computing the distances,

apart from the usual choice of distance functions, the user also needs to

decide on the linkage criterion to use (since a cluster consists of multiple

objects, there are multiple candidates to compute the distance to).

Centroid-based clustering

In centroid-based clustering, clusters are represented by a central vector,
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which may not necessarily be a member of the data set. When the number

of clusters is fixed to k, k-means clustering gives a formal definition as an

optimisation problem: find the k cluster centres and assign the objects to

the nearest cluster centre, such that the squared distances from the cluster

are minimised [161, 162]. The optimisation problem itself is known to be

non-deterministic polynomial-time hard (NP-hard), and thus the common

approach is to search only for approximate solutions. A particularly well-

known approximative method is Lloyd’s algorithm [163], often referred to

as the “k-means algorithm“. However, it only finds a local optimum, and is

commonly run multiple times with different random initialisations.

Distribution-based clustering

The clustering model most closely related to statistics is based on distribution

models. Clusters can then easily be defined as objects belonging most likely

to the same distribution [164, 165]. While the theoretical foundation of

these methods is excellent, they suffer from one key problem known as

over-fitting, unless constraints are placed on the model complexity. A more

complex model will usually always be able to explain the data better, which

makes choosing the appropriate model complexity inherently difficult.

Density-based clustering

In density-based clustering, clusters are defined as areas of higher density

than the remainder of the data set. Objects in these sparse areas - that

are required to separate clusters - are usually considered to be noise and

border points. The most popular density-based clustering method is “DB-

SCAN“ [166]. In contrast to many newer methods; it features a well-defined

cluster model called “density-reachability“. Similar to linkage-based cluster-

ing, it is based on connecting points within certain distance thresholds. A

cluster consists of all density-connected objects (which can form a cluster of
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an arbitrary shape, in contrast to many other methods), plus all objects that

are within these objects’ range. Another interesting property of DBSCAN is

that its complexity is fairly low.

Semi-supervised clustering

In addition to the similarity information used by unsupervised clustering,

in many cases, a small amount of knowledge is available concerning either

pairwise (must-link or cannot-link) constraints between data items or class

labels for some items. Instead of simply using this knowledge for the external

validation of the results of clustering, one can imagine letting it guide or

adjust the clustering process, i.e. provide a limited form of supervision. The

resulting approach is called semi-supervised clustering [167, 168].

2.8 Transmission Control Protocol (TCP)

As discussed in previous sections, network protocol-related attributes have been

widely used to characterise network behaviour and to detect anomalies. TCP is

by far the most common transport protocol in the Internet and has been regularly

used in anomaly detection applications for a number of years. This section aims to

provide an overview of the TCP protocol and how it offers a window into network

behaviour.

Traffic measurements in several large campus networks indicated that over

90% of network traffic is transported by the TCP [169]. The original definition

of TCP appeared in RFC-793 in 1981 [27]. Since then, many researchers have

identified problems and weaknesses of the protocol, and proposed solutions.

RFC-4614, “A Roadmap for Transmission Control Protocol (TCP) Specification

Documents“ provides a comprehensive review of all specification changes that

have transformed the TCP to its current status [170]. Although the implementation

details can differ, the core functionality of the protocol remains unchanged since
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its introduction.

TCP provides a reliable connection-oriented data service in packet-switched

networks. This is achieved by employing acknowledgements (ACKs), sequence

numbers, and timers. TCP employs window-based congestion control mechanisms

to adjust its congestion window size (cwnd). cwnd is the maximum amount of data

that the sender can transmit before receiving an ACK. The receiver also advertises

a limit (rwnd) on the amount of outstanding data. Data transmission is always

governed by the window size Wm = min(cwnd, rwnd).

TCP Reno [171] is one of the most widely-adopted TCP schemes. It has four

transmission phases: slow start, congestion avoidance, fast recovery, and fast

retransmit. TCP maintains two variables; cwnd, which is initially set to be 1 maxi-

mum segment size (MSS), and the slow start threshold (ssthresh). At the beginning

of a TCP connection, the sender enters the slow start phase, in which cwnd is

increased by 1 MSS for every ACK received; thus, the TCP sender’s cwnd grows

exponentially in round-trip times (RTTs). When cwnd reaches ssthresh, the TCP

sender enters the congestion avoidance phase. Reno employs a sliding-window-

based flow control mechanism, allowing the sender to advance the transmission

window linearly by one segment upon reception of an ACK, which indicates the

last in-order packet received successfully by the receiver. When packet loss occurs

at a congested link due to buffer overflow at the intermediate router, either the

sender receives duplicate ACKs (DUPACKs), or the sender’s retransmission time-

out (RTO) timer expires. These events activate TCP’s fast retransmit and recovery,

by which the sender reduces the size of its cwnd to half and linearly increases cwnd

as in congestion avoidance, resulting in a lower transmission rate to relieve the

link congestion [172].
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2.8.1 TCP variants

The initial idea and definition of TCP was introduced in RFC-793 [27] in 1988. Since

then, many researchers have closely studied every aspect of TCP and proposed

solutions for numerous problems [173, 174]. In recent years, it has become clear

that it can perform very poorly in networks with high bandwidth-delay product

(BDP) path gigabit networks [175]. The problem stems from the fact that the stan-

dard TCP AIMD congestion control algorithm increases the congestion window

too slowly. TCP was primarily designed for wired networks where the random bit

error rate (BER) is negligible, and congestion is the main cause of packet loss. Con-

sequently, traditional TCP schemes suffer from severe performance degradation in

a mixed wired and wireless environment due to inherently high BER [176].

An update and supplement to TCP was issued in RFC-1122 [177]. This intro-

duced many new concepts to make TCP much more robust and efficient. Since its

introduction, TCP has been modified numerous times to suit specific applications

and to improve the performance with growing networking needs. Jacobson [173]

introduced congestion control and flow control to TCP. This has resulted in several

important TCP versions with different congestion control variations that are used

by popular operating systems and networking platforms. Among the most popu-

lar are TCP Tahoe [27], TCP Reno [27], TCP Vegas [178], TCP New Reno [179], and

TCP SACK [180].

TCP implementations in the real world have to follow both RFC-793 [27] as well

as RFC-1122 [177] to guarantee their interoperability. Although RFCs 793 and 1122

give a detailed description of TCP implementation, two TCP implementations that

conform to the specifications can differ slightly because an implementer has some

freedom to choose the software design and the parameters to interpret the protocol

standards. With the introduction of other TCP variants, TCP implementations

have become subjective to each individual platform, thus giving hundreds of

unique flavours.
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The following list categories some of the most commonly-used TCP variants.

Reactive Congestion Control - The standard Reno scheme employs reactive flow

control. The congestion window is adjusted based on the collective feedback

of ACKs and DUPACKs generated at the receiver.

• TCP New Reno [179] - Modifies the fast recovery mechanism of Reno

to cope with multiple losses from a single window. TCP New Reno is

used by default in Redhat 7.2, FreeBSD 4.3-4.5 [181]

• TCP BIC [182] - Uses a binary search algorithm where the window

grows to the mid-point between the last window size (i.e., maximum)

where TCP has a packet loss and the last window size (i.e., minimum)

where it does not have a loss for one RTT period. TCP BIC is used by

default in Linux kernels 2.6.8 through 2.6.18 [183].

• TCP CUBIC [184] - Simplifies the window adjustment algorithm of BIC-

TCP by replacing the concave and convex window growth portions of

BIC-TCP by a cubic function (which contains both concave and convex

portions). TCP CUBIC is used by default in Linux kernels from version

2.6.19 to 3.1 [183].

• High-speed TCP (HSTCP) [185] - Uses a generalised AIMD where the

linear increase factor and multiplicative decrease factor are adjusted

by a convex function of the current congestion window size. HSTCP is

included in Linux as a selectable option in the modular TCP congestion

control framework since Linux kernel 2.6.16 [183]

Proactive Congestion Control - In proactive congestion control, the sender at-

tempts to adjust the congestion window pro-actively to an optimal rate,

according to the information collected via feedback, which can be translated

to an indication of the network condition. Delay-based congestion control is

a common proactive congestion control mechanism which uses packet delay
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to identify congestion as opposed to packet losses being used by loss-based

congestion control.

• TCP-Vegas [178] - Estimates the backlogged packets in the buffer of the

bottleneck link. Vegas selects the minimal RTT as a reference to derive

the optimal throughput the network can accommodate. TCP Vegas is

available in both Unix kernel and Free-BSD as an optional module.

• TCP-Westwood [186] - A rate-based end-to-end approach in which

the sender estimates the available network bandwidth dynamically by

measuring and averaging the rate of returning ACKs. TCP Westwood is

included in Linux as a selectable option in the modular TCP congestion

control framework since Linux kernel 2.6.16 [183]

• TCP-Hybla [187] - Increases the congestion window size more aggres-

sively to compensate throughput drop due to RTT increase.

• Delay-gradient congestion control (CDG) [188, 189] - Created by Heyes

et al., CDG is a sender-side delay-gradient TCP congestion control

algorithm. CDG has been designed to overcome the key limitation of

other congestion control mechanisms - their need to establish accurate

path RTT measures to set a delay-threshold. CDG has an improved

tolerance to non-congestion related packet losses and improves the

co-existence and fairness with loss-based TCP.

In addition to TCP variants mentioned above, there are many other TCP vari-

ants created for specific applications or operating systems. For example, Windows

operating system, since Windows Vista uses Compound TCP (CTCP) designed to

aggressively adjust the sender’s congestion window to optimise TCP for connec-

tions with large bandwidth-delay products while trying not to harm fairness [190].

TCP Westwood+ implemented in Linux kernel [191] are further examples of im-

proved TCP variants.
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2.9 TCP trace analysis-based behaviour inference

TCP trace analysis dates back several decades to the introduction of TCP as a

mainstream transport protocol. TCP sits in the middle of the TCP/IP protocol stack

and masks lower layers’ behaviour to minimise their effects on the application

layer. This unique position of the TCP in the protocol stack offers a window into

the behaviour of both lower and higher layers, which are otherwise impossible to

observe from any other single vantage point [12]. The effects embedded into TCP

packet streams, or “artefacts“, can be used as an excellent source of information to

remotely diagnose a performance bottleneck.

TCP trace analysis tools, techniques and applications can be categorised into

two groups: visualisation methods and inference methods. Table 2.2 summarises

the work on trace analysis tools available in literature.

Trace visualisation tools are often used by network professionals to analyse

the packet stream and associated details to identify the embedded clues about

client and link behaviour [192, 193, 194]. Although very valuable in manual

diagnosis processes, these tools are only capable of assisting the fault diagnostics

by organising and summarising the trace data into an easily comprehensible

format, rather than directly determining the root causes. Whilst we extensively

used tcptrace, xplot and wireshark during our research, these tools alone could

not perform automated end-to-end diagnosis.

In comparison with trace visualisation, inference methods identify and deduce

connection information from packet traces. Inference of packet traces is used in

several network applications, as shown in Table 2.2. These tools use techniques

such as simple packet sequence analysis [197, 200], heuristic analysis [206], and

machine-learning techniques [203, 205, 75] to infer the connection behaviour.

A number of inference tools have been developed to determine connection

characteristics (network tomography) such as RTT [195, 196], congestion win-
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dow [196], bandwidth estimation [197, 198, 199], and packet loss [200, 147, 207].

However, these studies focus only on different parts of a complete network di-

agnostic problem and are primarily used to collect the information needed to

guide the diagnostic decisions. Consequently, application of any one technique is

prohibitive in a comprehensive diagnostic tool focused on capturing wide range

of network attributes and behaviours.

The following two sections discuss how TCP inference tools and techniques

relates to network diagnostics and drawbacks of exiting methods towards scalable,

automated UD diagnosis system has been highlighted in Table 2.3

2.9.1 Network diagnosis using TCP trace analysis

Diagnosis of network performance problems requires a methodical approach.

First, the faulty segment of the network has to be isolated and second, the exact

root cause of the problem should be identified. Analysis of packet traces, espe-

TCP Trace Analysis
Visualisation methods Inference methods

• Trace statistics [193]
• Trace graphs [192]
• Trace packet headers and se-
quences [194]

• Network tomography
– Determining round trip time

(RTT) [195, 196]
– Bandwidth estimation [197, 198,

199]
– Packet loss estimation [200, 147]
– TCP windows and congestion

estimation [196]

• Protocol diagnosis [201, 202, 21]
• Intrusion detection and secu-
rity [203, 204]
• System fingerprinting [75, 74]
• Internet traffic identification and
classification [205, 62]

Table 2.2: TCP trace analysis tools, techniques and applications.
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cially from the TCP, is a sophisticated inference-based technique used to diagnose

complicated network problems in specialised cases [208].

Although the existing research literature lacks a comprehensive, automated

tool to infer network faults from TCP traces, there have been efforts to explore

the possibility of such a system. Table 2.3 provides a comparison of available TCP

inference-based network diagnostic tools and the drawbacks of these tools.

The tool tcpanaly by Paxton [201] was intended to detect subtle variations of

different TCP types and identify otherwise hidden TCP implementation issues.

Tcpanaly was an early attempt to automate the inference of packet traces for

fault diagnosis, although it was only capable of detecting errors in the TCP itself.

The TCP Behaviour Inference Tool (TBIT) [209] was another tool designed to

characterise TCP behaviour to detect non-compliance in TCP implementations

in public web servers. Work by Jaiswal and co-researchers [196, 212] on inferring

connection characteristics through passive analysis of packet traces also attempted

to automate the diagnosis using a heuristic process, which was later extended to

include a more extensive set of rules by Mellia and co-researchers [206, 213, 202].

In recent years, revived attention has been given in the research community to

the creation of automated diagnostic systems using TCP packet traces. The project

web100 [12] focuses on collecting per-connection TCP statistics through kernel

instrumentation (KIS) and has received much attention in the research commu-

nity. The Web100 tool-set has been used extensively for diagnosing high-speed

connectivity issues in projects such as the CERN-Large Hadron Collider and the

Visible Human project [208]. The capability of web100 to capture major protocol

events, using parameters otherwise hidden from users, has been instrumental in

some of the latest automated diagnostic tools. Web10Gig, a direct follow-on to

the work introduced in Web100 is currently working to provide an instrumented

implementation of TCP as part of standard Linux to diagnose hidden network

issues in gigabit networks [214].
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Tool Characteristics Drawbacks
tcpanaly
[201]

• Designed to detect TCP protocol er-
rors
• Earliest attempt to automate the TCP

trace analysis process
• Analyses packet sequences and uses

fixed code segments for detecting ab-
normalities.

• Only designed to detect TCP protocol errors
• Fails to create a general technique to detect er-

rors. Instead, the authors have coded the algo-
rithms for “idiosyncrasies of the different TCP
implementations [201]“, an approach that limits
scalability.

TBIT [209] • Developed to detect bugs and non-
compliance in TCP implementations
deployed in public web servers.
• Creates artificial packet sequences to

test the server TCP behaviour.

• Artificial packet sequences are often blocked
by firewalls.
• Diagnosing capability is limited to a pre-

programmed set of tests and TCP implemen-
tations.

Mellia et
al. [206]

• Uses cascading heuristic technique to
match different predefined conditions
using trace information.
• Considers RFC-2581 [172] as the base

TCP standard.

• Only capable of detecting a few phenomena
and lacks the ability to provide root cause diag-
nosis for the trace behaviour.
• Heuristics become extremely complicated

when detecting complex faults.
• A general heuristics cannot be developed since

behaviour of many TCP variants differs from
RFC-2581.

NPAD
/ Path-
diag [210]

• Uses web100 [12] as the basic infor-
mation source for monitoring TCP be-
haviour.
• Relies on active measurement and

passive analysis of path data.
• Uses sender TCP parameters to de-

tect client and path issues.
• Performs effectively when hops be-

tween client and server are limited.

• Deployment is complex and time-consuming
because of server kernel recompilation or dedi-
cated diagnostic servers needed by web100.
• Relies on the TCP flag negotiations to deter-

mine the status of connection options. However,
negotiated functions are often not properly per-
formed by the TCP implementation [51, 211] and
diagnosis can be misled by header flags.
• The connection details are captured only at the

server. No mechanism to directly gather client’s
TCP parameter data.
• Since most diagnostic parameters are calcu-

lated using available algorithms, the accuracy of
each of these algorithms against different types
of TCP in different platforms cannot be guaran-
teed.
• New algorithms must be added to the analysis

engine in order to detect any additional faults.

NDT [21] • Uses web100 to gather per-
connection TCP statistics.
• Relies on active measurement and

passive analysis of path data.
• Uses bi-directional data streams and

server TCP KIS captures.

• Recompilation of server kernels hinders the
flexible deployment of the tool in any node.
• For detection of every fault AND logic of mul-

tiple conditions is checked. However, manifesta-
tion of each condition in the packet stream can
vary with the implementation of TCP.
• Only offers limited diagnostic capability

Table 2.3: Diagnostic tools utilising TCP inference: comparison of characteristics
and drawbacks
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NPAD diagnostic servers with Pathdiag [210] and Network Diagnostic Tool

(NDT) [21] use the information extracted using web100 instrumentation to diag-

nose connectivity problems of the client systems. Similar to Web100, statistical

information for TCP research (SIFTR ) is a kernel module available in FreeBSD

since kernel 6.3 that logs a range of statistics on active TCP connections to a log

file [215]. It provides the ability to make highly granular measurements of TCP

connection state, aimed at system administrators, developers and researchers. Us-

ing SIFTR measurements, diagnostic systems can be developed to detect specific

characteristics of network faults.

Table 2.3 shows the drawbacks in the existing solutions to infer UD soft-failures

using TCP. Some of the most common issues are (i) limited scalability due to

the algorithm design targeting a specific fault, (ii) being based on heuristics or

expert rules, (iii) requiring privileged access to the end user device to capture data,

(iv) requiring a kernel or core system modification at the user to set up the tool.

These limitations have prevented such solutions from being used in commercial

networks. As evidenced by recent patent filings by networking companies [216,

217, 218], there is a renewed interest in creating automated, scalable TCP inference

mechanisms for fault diagnosis. However, the solutions created must have the

flexibility to scale easily to diagnose faults in a wide range of user devices and

network conditions. The research proposed in this thesis focuses on (i) using

simple data collection mechanisms which do not require client side modifications,

(ii) comprehensive signatures of faults instead of expert rules and (iii) modular,

scalable machine learning mechanisms for root cause diagnosis.

2.9.2 Machine learning for TCP-based behaviour inference

When trained with packet traces representing a specific behaviour, supervised ML

algorithms can identify a similar behaviour in test traces.

ML-based inference of TCP traces has been used in several applications. In
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recent studies, Dondo et al. [203] used ANNs, Shon et al. [219] used SVMs, and

Kuang et al. [220] used kNN algorithms to infer network intrusion events using

TCP packet traces. With the emergence of a diverse range of internet applications,

Internet traffic classification has gained substantial momentum. Hong et al. [50]

used Bayesian classifiers for inferring traffic categories from packet traces, and

similarly, SVMs have been used by Yuan et al. [205]. Machine learning algorithms

have also been used for network tomography applications such as TCP throughput

prediction using SVMs [198] and packet loss estimation [147] using Bayesian

networks. TCP inference using Bayesian classifiers has been used for remote

system fingerprinting by Beverly [75], and in a similar study, Burroni et al. [121]

introduced a remote OS identification tool using ANN.

A number of studies have used machine learning for root cause diagnosis of

enterprise networks [29, 30, 31, 32, 33], access links [34, 35], home networks [36],

and computer systems [37, 31]. These diagnostic tools lack the functionality

and generalisation required for a broader diagnostic solution. For example, the

decision-tree-based “NEVERMIND“ [34] is a tool developed purely for the diagno-

sis of ADSL link problems, while the decision-tree-based “Netprints“ [36] is only

used for diagnosing Wi-Fi home network issues. Furthermore, these methods re-

quire information such as user requests, event logs, system calls or private network

traffic, which demand privileged access. These limitations can be avoided by using

an inference-based method with an end-to-end TCP connection, independent of

the link layer. Our literature survey did not find any comprehensive, scalable,

intelligent inference techniques using TCP packet traces for an automatic diagnosis

of network performance problems.
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CHAPTER THREE

SIGNATURES OF NETWORK SOFT
FAILURE IN END-USER DEVICES

3.1 Introduction

Studies have shown that ML-based detection techniques [36] can provide the

automation desired in soft failure diagnostic systems. ML-based techniques offer

better scalability [221, 222] compared to systems based on expert rules such as

Pathdiag [210] and NDT [21]. ML algorithms capture the runtime behaviours of

networked devices and characterise them to create unique “signatures“ of network

or UD failures. A signature is defined as a collection of features (or attributes),

each representing a single aspect of runtime behaviour, and provides the key to

differentiate normal behaviours from abnormal or faulty behaviours.

A detailed discussion of common uses of network signatures in on-line traffic

classification, IDSs, and failure detection systems was presented in Section 2.4.

These signatures often contain only a limited set of features, because they were

generated for specific applications. In addition, recent studies overlook the effects

of network or link variations on signatures by capturing training and evaluation

data from the same network location. Insufficient numbers of features, dependence

on stable link properties, source protocol variants [24], and large sample sizes

make existing signatures published in the literature unsuitable for UD soft failure
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diagnosis. Attempts to use such signatures for soft failure detection at the device

level have resulted in unacceptably high false detection rates [82].

Therefore, in this chapter, we propose a new way of characterising network soft

failures at the UD, with the broad objective of creating an automated diagnostic

system. The main contributions of the chapter are summarised as follows:

(i) The novel concept of aggregated TCP statistics-based normalised signatures

is proposed as a scalable and comprehensive way of uniquely characterising

a UD soft failure. These signatures provide the foundation for ML-based

diagnostic systems that can save time and costs.

(ii) Link adaptive signature estimation (LASE) is proposed as a technique to

dynamically generate NSSs for arbitrary link conditions from a limited set of

collected NSSs to improve the scalability.

(iii) We collect data from various networks and apply the signature concept to

create signatures of soft failures. We analyse how different network prop-

erties affect such signatures and identify the challenges, dependencies, and

limitations.

(iv) We also conduct extensive analysis of the LASE technique to offer an insight

into various types of features, to show that these signatures are scalable and

can be estimated with a high degree of accuracy.

3.2 Normalised Statistical Signature (NSS)

As remote access to an UD is usually not possible for a network service provider, a

TCP packet stream provides an ideal observation point to identify the root causes

of network performance-related issues. Because of TCP’s position in the middle

of the protocol stack and its reliable transport functionality, performance issues

in other layers are embedded as anomalies in TCP packet streams. Furthermore,
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TCP has the added advantage of being supported by most networks and devices

today. Because of these unique benefits offered by TCP, we rely on the features

extracted from captured TCP packet streams to characterise UD anomalies.

Our focus in this thesis is fault diagnosis performed from the edge of the

network administrator domain, using the edge router/access server as the ob-

servation point. This narrows down the path to an access link and eliminates

complexities that can affect the uniformity of captured features. The diagnostic

server is deployed as an application package with simple installation, and modules

containing trained classifiers can be attached to the main system.

The capability of a diagnostic system is primarily dependent on the effective-

ness of extracted signatures to characterise faults. Key aspects in constructing a

signature include the information source, observation point, capture mechanisms,

data extraction, and post-processing. Furthermore, the features used to construct a

signature should be applicable to a wide variety of network conditions and allow

the diagnostic system to be used to capture new abnormalities.

3.2.1 Operational overview

Figure 3.1 shows an operational overview of the signature generation process. The

user can initiate the diagnostic process, which runs as a browser-based application.

This application loads the “user modules” and starts the data connections for

active device monitoring. The “capture modules” then acquire packet traces of

controlled TCP connections between the diagnostic server and the UD. However, it

is not necessary for the diagnostic server and the capture module to be co-located.

The capture module can be deployed into the access router of the last-mile link

or to the edge of the network, while the diagnostic server resides in a dedicated

location. With this method, the user’s privacy is protected, as they do not have to

relinquish privileged administrative-level access to network operator personnel,

as in most conventional remote diagnostic services. Meanwhile, the operator can
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Figure 3.1: Operational overview of the UD soft failure signature generation
process. The capture module can be deployed into the access router of the last-mile
link or to the edge of the network.

remotely collect the necessary packet data for diagnosis through this automated

process. Collected packet traces are then analysed at the server and the UD to

extract aggregated statistical attributes of the trace. Only the extracted feature

data is transmitted from the UD to the diagnostic server as a key-value pair and

only requires under 10 Kilobytes of newly create overhead data to be transmitted

between user and the ISP server. If required, raw traces from the UD can also be

transferred to the diagnostics server for more advanced investigations.

When a user initiates the diagnostic process, two packet traces are captured, one

from an upload and another from a download. We extract 230 distinct attributes

called “raw features“ from each trace and then serially combine them (amalgamate)

to create a feature vector of 460 features. This feature vector with 460 features

is called a “statistical signature”. The statistical signature is then normalised

against a previously collected healthy baseline to create a feature vector called a

“normalised statistical signature“ (NSS).
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(b) Disabled SACK error
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(c) TCP timestamps error
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(d) Window scaling error
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(e) Link-UD speed mismatch
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(f) Duplex mismatch
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(g) UD firewall causing delay
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(h) UD firewall causing packet loss
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(i) Simultaneous insufficient read-write buffer

Figure 3.2: Comparison of NSSs for common UD soft failures. Here, the x-axis
(columns) of each figure represent 460 features of the 70 NSSs shown on the y-axis
(rows). Each of the features has been normalised and scaled [−6, 6] and each of
the features is represented by a coloured vertical line projecting the scaled feature
value to RGB space. Although, the NSSs of the same fault show minor variations
due to stochastic nature of the networks, groupings of 70 NSSs of the same fault
clearly shows that the NSSs are consistent in uniquely characterising a fault and
can be used as the “fingerprint“ for a diagnosis.
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Figure 3.2 shows NSSs for nine different UD soft failures. In each sub-figure,

we have grouped 70 NSSs that belongs to the same fault to show that every fault

has a unique NSS ”pattern” i.e. while the NSSs may differ slightly, for the same

fault, they have a pattern that is similar. We have visualised 70 NSSs per group

as opposed to only a few to show the unique patterns created for each fault and

consistency of the pattern within the group. However, the selection of 70 NSS per

group is arbitrary. The sub-figures clearly show, for a particular fault, the proposed

process generates a consistent signature with a unique set of characteristics, and

each group of NSSs are uniquely identifiable. However, figures also show that

within each group, the NSSs show minor variations due to the stochastic nature of

real-world networks.

To diagnose the root causes of UD soft failures, it is necessary to characterise

and build a signature of normal network behaviour. This signature serves as

the baseline of a “healthy“ UD. In Chapter 1, we defined a healthy UD as a

device capable of delivering typical network performance in the prevailing local

network circumstances to an end-user. Healthy signatures are captured by placing

controlled, healthy UDs with optimal configuration settings as active probes in

the access network as part of the system initialisation process. Depending on the

dynamic nature of the network, these healthy UDs actively probe NSS generation

process and the captured signatures are used to update the healthy baseline. Since,

trace characterisation technique proposed here is agnostic to the specific TCP

types, limited number of healthy UDs can create the baseline signature without

impacting the NSS accuracy for UDs with a variety of TCP stacks.

When a device suffers from a failure, the “faulty“ signature is analysed against

the baseline healthy signature to identify the unique pattern of the deviations

from the expected behaviour. These deviations can be used to pinpoint the likely

cause. Figure 3.2 also highlights the challenge in diagnosing the root causes using

signatures collected over real-world networks. Since every signature is slightly
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different, the diagnostic technique has to be able to create a ”model” of the fault

pattern that’s generalised for the same fault. However, at the same time, it should

also preserve the differences (create different models) for different faults. It is a

challenge to create such complex models and often, machine learning is uniquely

suited to provide the best solutions.

3.2.2 Capture module

Most signatures in the literature are generated using the passive collection of

arbitrary traffic flows captured from live networks. Due to the on-demand nature

of our system, we opted to create signatures using a user-initiated connection with

artificially-generated data between the UD and the diagnostic server.

As previously mentioned, TCP has many advantages as an information source.

It is supported by almost all networking devices, and its reliable transport function

means that network failures impact meaningfully on its behaviour. The protocol

has lightweight and portable packet-capturing mechanisms [223], and the popu-

larity of the protocol has resulted in a large number of techniques being developed

over the years for information extraction [193, 224] from TCP packet traces.

When a user initiates the test, two TCP-based data transfers of a fixed 20 MB

file (an upload and a download) serially run between the UD and server. The

time taken to gather data depends on the file size, link quality, and the UD fault.

A larger size file transfer generates more packets and consequently, a more sta-

tistically robust signature. However, a larger file increases the data collection

time, especially when the UD or link is highly degraded. For the purpose of this

research, we used a file size of 20 MB as that size enabled us to collect sufficient

samples for the research without compromising the data accuracy. However, this

file size can be increased as long as training and testing samples are collected using

a same size file transfer. Bi-directional packet streams of these connections are

captured using the packet capture utilities deployed at both the diagnostic server
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and UD. We use a self-contained, portable packet capture mechanism that does

not require kernel manipulations or installations.

Constant transfer size, protocol, capturing parameters, and static server con-

figuration provide a baseline performance characteristic, unavailable when using

passive capture of arbitrary live traffic flows. By controlling the content of cap-

tured traffic and limiting the amount of traffic captured, we avoid many privacy

concerns [225] that arise when using live traffic.

3.2.3 Feature extraction module

The two captured TCP packet traces are then sent to the feature extraction mod-

ules where they are analysed and statistical attributes are extracted. We use an

analysis tool based on tcptrace [193] to identify, analyse, and aggregate the trace

information, the result of which we call “raw“ features.

Packet captures are collected from both the upload and the download at the

server and client. We extract 115 features from server side capture and the other

115 features from the client side capture for each transfer. The 230 features from the

download is then concatenated with the same 230 features from the upload, each

an aggregated statistical attribute of the trace. In summary, process extracts 460

unique features. Table 3.1 shows broadly (but not exhaustively) the categorised

types of features with a limited set of examples. An exhaustive list of features can

be found in Appendix 1.

3.2.4 Signature generator

The raw features extracted at the user module are sent to the signature generator at

the diagnostic server. The signature generator combines the feature set collected at

the diagnostic server with those collected at the UD to create the final raw feature

vector with 460 features which is called the raw signature.
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Feature type Features

Cumulative totals of various packet
types

Total packets
SACK packets
DSACK packets
Retransmitted packets
Triple dupACKs

...
Cumulative payload characteristics

Unique bytes
Packets with data
Data retransmitted
Data out-of-order
Data missing

...

Max, min, mean, cumulative
observation frequencies of events

Out-of-order events
Cumulative acknowledged segments
Data retransmissions
Max segment retransmissions
Zero window advertisements
Window probes

...

Max, min, mean information on
variable parameters

Window advertisements
Segment size

...

Initial state and final state parameters
Window scaling advertisements
Initial window

...

Round trip time, arrival time
progression analysis

Retransmission times-max-min-ave
Idle times-max-min-ave
RTT-max-min-std

...

Boolean parameters of TCP settings

3-way handshake flags (SYN/FIN)
TCP options
Data pushed

...

Table 3.1: Types and limited examples of features extracted from the TCP trace. An
exhaustive list of features can be found in Appendix 1. The same unique set of 115
features are extracted from both upload and download packet streams at the server
side and client side. Separate cumulative features are created for each direction
(client↔ server ) considering the bi-directional nature of the connections.
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Figure 3.3: Comparison of the first 40 raw features extracted from healthy and
faulty UDs.

For training and testing purposes, we store all our feature vectors in a database

Θcfd = {(x1, y1, z1), . . . , (xn, yn, zn)}. Here xi ∈ <m is the m-dimensional feature

vector, yi = {cf0} is healthy or yi ∈ {cf1, . . . , cfp} is the fault label (when known)

associated with the feature vector xi, p is the number of fault cases, i = 1, . . . , n, and

n is the number of signatures. zi is the vector of expected baseline link properties

(e.g. link delay, bandwidth etc.) of the sample. The feature vector xi combined

with the class label yi and link properties zi is called the “raw signature“ of the ith

instance.

3.2.5 Creating NSSs

Figure 3.3 shows the raw values of the sub-set of the first 40 features for two

UDs, one healthy and one suffering from a fault. The figure shows that significant

portions of the features have values that differ greatly between the healthy and

faulty cases. The patterns of these differences vary for every fault and provide the

key distinctions needed for a unique identification. Also, with a log − y axis, the

figure shows that the features in their raw form have significantly different scales.

The scale variations are expected because of the myriad of types of statistical

attributes considered.

For a given access link, traces captured from a controlled healthy UD with
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optimal system settings provide the baseline performance signature. Capturing

the healthy signature if part of the system initiation process where network op-

erator place multiple healthy UDs in the network as active probes to generate

sufficient healthy traces to provide a consistent baseline. The healthy signature is

updated periodically depending on the dynamic network behaviour to account

for network changes over time by automatically triggering the signature gener-

ation process. We normalise the raw features in the suspected faulty signatures

against the healthy baseline features for the particular access link. Given that x is

a m-dimensional feature vector, (xcf1, cf1, z) is the sub-set of raw faulty signatures,

and (xcf0, cf0, z) is the sub-set of raw healthy signatures,

normalised xkcf1 =
xkcf1 − µ

σ
(3.1)

where, µ and σ is the mean and standard deviation of the population xkcf0 for feature

k = 1, ...,m. The vector of these normalised features together with the class labels

are called the NSS. The normalisation of the signatures (i) re-scales the features

to a more manageable range, (ii) provides a baseline to all the signatures for a

clearer and easier comparison, (iii) helps reduce computational complexity and

improve the detection accuracy later when used in machine-learning algorithms,

and (iv) improves stability of the features in a dynamic network and the portability

of the signatures between networks.

Figure 3.4 shows the first 50 features of a normalised signature or an NSS. The

feature values of two different faults have been standardised against the same

baseline, and the figure shows a clear difference between the signatures. These

differences are the fingerprint of a fault that can be detected using various pattern

identification mechanisms later for a automated diagnosis.
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Figure 3.4: Comparison of the first 50 features in NSSs for UDs with insufficient
buffer and D-SACK errors.
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3.2.6 Fault severity

Faults suffered by the UDs can be boolean in nature (e.g. disabled or enabled

options) or can take a range of values and have a proportional effect on the

performance. For example, the receive buffer level of the device, depending

on the size, can have a negligible or significant impact on the throughput. The

boolean types of faults are easily identifiable from NSSs, as evident in Figure 3.2b

and Figure 3.2c. The existence of a “continuous“ type of fault is also effectively

characterised by the NSSs, as shown in Figure 3.2g and Figure 3.2i.

The ability to characterise the severity of the fault, at least to a couple of discrete

levels, can have significant benefits in a diagnostic application. To identify the

NSSs’ capability, we varied the severity in 6 levels for various buffer and queue

limitations and collected data over the campus network. Figure 3.5 shows a

comparison of partial NSSs (100 features) for the case of insufficient read buffer.

The features are scaled to a [-3,2] range and colour mapped for easy comparison.

The figure clearly shows that some features show distinct intensity variations

following the fault level. A cascading level diagnostic system can first use the

overall NSSs to identify the type of the failure and further continue to narrow

down the level of the failure using a specific sub-set of features.

3.2.7 Advantages of NSSs

For the root cause diagnosis of UD performance problems, the proposed signatures

and the generation process offer many advantages, including the following:

• A large feature set means even the minute variation of UD behaviour can

be captured. The most suitable feature sub-set can be selected on a fault

basis instead of depending on a smaller number of common features to

characterise all the faults.

• The aggregated statistical features capture the overall connection behaviour
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instead of specific packet sequences. The behaviours of individual TCP

implementations (between platforms) are avoided.

• The signatures are solely based on TCP packet traces. No other information

is needed.

• Healthy baseline is periodically updated to account for normal network

variations.

• Data for the NSSs can be sourced without remotely accessing or physically

logging on to the systems. This is a capability unavailable in many network

diagnostic tools.

• No kernel modifications, software installation, or specialised knowledge is

needed at the UD. The portability of the modules simplifies the implementa-

tion.

• The same signatures can be used for identifying soft failures in intermediate

nodes in a network by deploying a trace collection module in a neighbouring

node.

3.3 Data collection

Healthy and faulty signatures can be collected from live networks such as cam-

pus LANs, enterprise networks or ISP networks. However, collecting sufficient

samples from live networks to conduct research with statistically robust analysis

poses a number of challenges. Obtaining labelled data which is accurate and

representative of all types of behaviours is often prohibitively expensive, due to

the amount of time and effort required. Learning-based methods require data not

only for testing and comparison but also for training, resulting in even higher data

requirements. The data used for training needs to be representative of the network
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behaviour to which the learning-based method will be applied, possibly requiring

generation of new data for each deployment. Labelling is often done manually

by a human expert and hence substantial effort is required to obtain the labelled

training data set. Typically, obtaining a labelled set of anomalous data instances

covering all possible types of anomalous behaviour is more difficult than obtaining

labels for normal behaviour. Moreover, anomalous behaviour is often dynamic

in nature. For example, new types of anomalies might arise for which there is no

labelled training data and this can introduce inconsistencies into labelled data sets.

The collection of sufficient high quality data is not a problem unique to the

present research. Most ML and ML-based application research faces similar issues

and a number of solutions have been proposed in the research literature. Some

studies, mostly dealing with smaller data sets, opt for manual labelling [226, 37].

Considering all the possible scenarios and the number of samples we required,

manual labelling was not a feasible solution in our particular study. Another option

is to develop a specific set of algorithms, either heuristic-based or more advanced,

such as active learning methods [227] to create the labelled data set. However,

this is a deviation from the main aims of this research, and such techniques were

deemed beyond the current research scope. Another common approach in the

research community is to use established data sets with already sampled data [228].

Unfortunately, there are no data sets currently available for network soft failures

in UDs. A final compromise some studies have resorted to is to inject a set of

anomalies deemed representative of the kind the anomaly detection system should

detect [229]. A number of techniques have been proposed that inject artificial

anomalies in a normal dataset to obtain a labelled training dataset [230, 231, 232].

Whilst artificial anomaly injection works in some situations, the complex nature of

the network signatures meant that an accurate representation of the real-world

networking environment and a specific scenario cannot be achieved by artificially

manipulating the data.
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After evaluating all available options in the literature for data collection, we

opted to use a combination of network test-beds, fault injectors and network

emulators to re-create a select set of UD failures in a number of controlled and

uncontrolled (live) networking environments. We used a purpose-built fault

injection module, and instead of injecting artificial anomalies into the collected

data, our fault injector module injected faults into the UD itself. This approach

provided a number of advantages over all the other options previously mentioned:

(i) Fault injection creates more realistic data. Once a fault is injected into a UD,

the behaviour is identical to an actual device suffering from the same fault.

(ii) Data can be collected in a controlled environment with known network

parameters and stable end-points

(iii) Data collection can be automated

(iv) Data collection can be parallelised

(v) A range of scenarios and network conditions can be re-created with minimal

effort

(vi) The actual faulty scenario is fully known, and no unknown hidden issues

pollute the dataset

(vii) The data can be accurately labelled without the additional overhead of man-

ual processing

(viii) It is not necessary to have buy-in from users to engage with the system when

experiencing problems

(ix) It eliminates privacy concerns of real users and complexities around compli-

ance procedures.

The dataset created during this research was collected over diverse networking

environments, with a variety of link conditions, and a range of UD soft failures
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and TCP types. We created 16 types of UD conditions, 5 of which had varying

levels of severity, and used 8 TCP variants over 3 distinct network test-beds with

changing link parameters. For each of the unique scenarios, a number of samples

were collected at different times to enable a more robust and realistic analysis. The

final data set consisted of 1.2 million samples of TCP traces and the extracted NSSs,

making five terabytes of data in total. All the samples are accurately labelled and

both raw data captures and extracted signatures have been preserved with the

highest level of granularity possible. To our knowledge, no such data set of UD

failures exists and this is a key contribution to the networking and ML research

community.

3.3.1 Fault injection into UD

We created a fault injection module to re-create some common problems in UDs.

We limited the UDs to personal computers as they are the most common UDs. We

used a Linux (Kernel 2.6.32 with Ubuntu distribution) operating system in the UD

as it offers the most flexibility in terms of manipulating the system configuration

to re-create some common UD network performance issues. The Linux-based UD

also offers the flexibility to switch between TCP types, including those that are

used in other operating systems such as Microsoft Windows. Given that our data

samples are purely TCP traces, this flexibility offered us the capability to emulate

a variety of UD types, especially the TCP layer of the UD using a single device.

The faults that were injected were only indicative sets of common issues,

representing a very small sub-set of all the possible scenarios. The objective was to

re-create a select few UD faults so that proposed frameworks and systems could

be evaluated with realistic data. The following list describes the various faults

injected into the device in addition to the healthy UD scenario.

(i) Disabled SACK error: Selective acknowledgement (SACK) capability of
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the TCP layer is critical to the perceived bandwidth, particularly when the

network has inherent packet loss. Some OSs and devices come with the

TCP SACK option disabled by default and sometimes system administrators

disable the SACK option across the whole organisation due to concerns over

support with legacy middle-ware. Disabling SACK may have a negative

impact on the user, particularly when performing high-speed transfers over

lossy networks.

(ii) Disabled D-SACK error: Duplicate Selective Acknowledgement (DSACK)

is another feature to improve the bandwidth of a connection over a lossy

network by avoiding unnecessary re-transmissions [211, 51, 233, 234]. This

capability is also disabled by default in some devices. Some applications

installed on the device can override DSACK configurations and create unin-

tended performance bottlenecks when the device moves from a non-lossy

network to a lossy network.

(iii) Insufficient write buffer: The write buffer of the device is crucial when send-

ing data through the network, especially a single large file. Insufficient write

buffer memory allocations can create a bottleneck in the end-to-end connec-

tion [208, 28]. Whilst most middle-ware can auto-tune the write buffers, UDs

usually come with limited auto-tuning capability and conservative buffer

levels. When artificially limiting the buffer levels to produce this common

network bottleneck, we used five different levels of severities as distinct cases

to provide more granular data.

(iv) Insufficient read buffer: The read buffer of the device is crucial when re-

ceiving data through the network, especially large files. Insufficient read

buffer memory allocations can create a bottleneck in the end-to-end connec-

tion. UDs usually come with limited auto-tuning capability and conservative

buffer levels. We used five different levels of severities by limiting the buffer
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capacity at distinct levels to create more granular data.

(v) Simultaneously insufficient read & write buffer: This particular scenario

includes both a write buffer limitation and a read buffer limitation in the

same UD. Having two different types of faults in a single signature increases

the complexity of the diagnosis, and the NSSs in this special scenario were

used to evaluate the system’s robustness and capability in such a scenario.

(vi) TCP timestamps are not working/in error: Timestamps are a useful feature

in the network stack, especially to keep track of round trip times and sequenc-

ing. Timestamps are used by a number of different algorithms to optimise

the connection characteristics. Disabled timestamps have a negative impact

on the connection speeds and the stability of the connection.

(vii) Window scaling error: The window scaling capability of the networking

stack is vital to utilise the bandwidth offered by high-speed network links.

Disabling this capability severely hinders the users from using the full band-

width on offer. It can cause a user’s Internet connection to malfunction

intermittently for a few minutes, then appear to start working again for

no reason. Although most users are unaware of it, this is one of the most

common issues that create a performance bottleneck in UDs (e.g., when the

“public“ Internet connection type is chosen in Windows OS, this overrides

the normal window scaling behaviour and restricts the window to a lower

level, creating a bottleneck.)

(viii) Limited reordering threshold: Re-ordering is a common occurrence in

lossy networks. Depending on the network characteristics, the default re-

ordering threshold can be insufficient to properly manage the packets that

are out of order and trigger re-transmission requests. This will reduce the

perceived bandwidth of the user.
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(ix) Link-UD speed mismatch: Most middle-ware (e.g. routers) and UDs come

with auto-negotiation capability to synchronise link speeds between the

router and the device. However, in some instances auto-negotiation fails or

is not supported. In such situations, the link speed offered by the router can

be different to the link speed configured at the UD. This issue is difficult to

diagnose and manifests only as a performance problem. We created a number

of levels of mismatch, for example, 100 Mb/s with 10 Mb/s and 1000 Mb/s

with 10 Mb/s.

(x) Duplex mismatch: Similar to the previous case, it is crucial for the link

(router) duplex mode ( full-duplex, half-duplex) to match the device con-

figuration. When the duplex modes are mismatched, the user will notice

severe performance problems and stability issues in the connection. This is a

common issue in corporate environments, particularly when there are legacy

middle-ware devices in use.

(xi) Link-UD speed mismatch & duplex mismatch: This scenario created both

faults in the same UD simultaneously. If the issue of failed synchronisation

is caused by the faulty middle-ware, it is likely that both attributes will be

mismatched between the link and the UD.

(xii) UD firewall causing packet loss: Most devices today have a firewall either

pre-installed or installed as third-party software. The firewall adds an extra

layer of security to the network communications, which means that data has

to be scanned at the application layer before reaching the user. When poorly

configured, firewalls can cause packet losses, which will be perceived by the

user as a loss of bandwidth. For a non-technical user, it is often difficult to

find out if the firewall is causing the issue.

(xiii) UD firewall causing packet delay: Similarly to the previous case, firewalls

can delay the packets from reaching the application. This can be compounded
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by deeper levels of security restriction and additional features such as deep

packet inspection of some firewalls. We specially injected firewall packet

delays to understand if the NSSs from such delays are different to delays that

are caused by the network or data-link layer.

(xiv) Overloaded UD CPU: One of the most common network bottlenecks is

caused by overloaded CPUs. This can be due to the number of simultaneous

applications users run, the small capacity of the CPU - especially in mobile

devices, or due to a virus or malware in the device. Overloaded CPUs can

impact not only on large file transfers, but also on bursty traffic like web

browsing.

(xv) Overloaded UD memory: Another common issue causing slow network

performance is the lack of a device’s random-access memory or RAM. This

can be due to the RAM utilisation of other applications or insufficient RAM

provided in the device. Even if the read and write buffers have been correctly

allocated, users will experience slow or interrupted connections if the device

RAM is not sufficient.

(xvi) UD HDD I/O overloaded - faulty: Most data that is transmitted into or out

of the UD interacts with the device’s hard disk (HDD). Hard disks have input

and output (I/O) operation limits which determine the number of operations

the disk can handle in a second. Despite disk I/O always being much higher

than network I/O, it can still be overwhelmed by HDD-heavy applications,

faulty applications, rogue malware, a faulty HDD hardware, a faulty HDD

driver or a faulty I/O bus. In these scenarios, the perceived network data

transfer rates can suffer.
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3.3.2 TCP variants

Section 2.8.1 above provided details of various implementations of TCP. We used

the TCP variants in Table 3.2 in the UD by dynamically changing the system con-

figurations to activate and de-activate the TCP variant being used. Since each TCP

variant behaves slightly differently, the data collected across these various TCP

implementations is important to demonstrate NSSs ability to generalise the overall

behaviour using aggregate statistics. Data from different TCP variants also provide

test samples to evaluate the ability of the proposed diagnostic methodologies to

cope with minor changes between the TCP variants.

TCP variant
TCP Reno
TCP New Reno
TCP BIC
TCP CUBIC
High-speed TCP (HSTCP)
TCP Vegas
TCP Westwood
TCP Hybla

Table 3.2: TCP variants used in the UD

3.3.3 Network test-beds

Throughout this research, we used the following test-beds to collect the sample

data.

Test-bed 1: Laboratory controlled network with emulated links

The first test-bed re-created the scenario shown in Figures 3.6 and 3.7. This set-

up offered the best control over all the elements in the end-to-end connection,

including the UD and access link. The test-bed was established to create the most

generic usage scenario of the diagnostic system: a UD connecting to the access
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Figure 3.6: Test-bed 1: An access router, directly connected to a UD over a wired
access link emulated using dummynet-based link emulator.

router directly through the access link. The access router sits at the edge of the

service provider network and in this particular scenario, is co-located with the

diagnostic server.

The UD and the diagnostic server ran on Linux 2.6.32 with Ubuntu distribution,

capable of running many TCP variants. The access link was emulated using a

network emulator, dummynet [235] on FreeBSD 7.3. The test-bed controller was

used to orchestrate the events in a pre-configured order so that the data collection

process could be automated.

The connection link between the UD and the access router is of particular

Figure 3.7: Monash University laboratory setup of the test-bed 1
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interest to us in this research. The link properties, such as bandwidth, latency,

packet loss, bandwidth-delay product (BDP), and middle-ware queues, have an

impact on some of the NSS features. To evaluate and model the impact, we

required data across a range of links, which would have been prohibitive in a

live network. However, by using a link emulator, we can dynamically change the

link characteristics such as link latency and packet loss, effectively emulating the

effects these parameters will have on the NSSs.

We used FreeBSD-based dummynet, a live network emulation tool, originally

designed for testing networking protocols, and since then used for a variety of

applications including bandwidth management. Dummynet has been commonly

used for running experiments in user-configurable network environments [236]. It

simulates/enforces queue and bandwidth limitations, delays, packet losses, and

multi-path effects using a mechanism called pipe. More details on the operating

mechanism and the configuration of dummynet can be found in [235, 236].

We particularly focused on emulating the effects of bandwidth, latency and

packet-loss level link parameters. The matrix of emulated link parameters can

be found in Table 3.3. When emulating packet losses, dummynet uses a uniform

random loss model that can be configured to a specified loss probability. However,

it is commonly understood that in real world networks, packet loss often occurs

in bursts. Consequently, dummynet’s emulation of packet losses is most likely

not representative of all Internet packet losses. With test-bed 1, our objective is

to collect aggregated statistics of the overall packet traces to establish a baseline

healthy signature and faulty signatures for evaluating the proposed systems within

a controlled laboratory condition. Since, we are consistently using dummynet to

emulate packet losses in our controlled environment, all signatures generated on

test-bed 1 are based on the same uniform loss model. We subsequently extend our

datasets with real-world networks in test-beds 2 and 3 to capture data with more

realistic bursty packet loss behaviour.

91



Bandwidth (Mb/s) Latency(ms) Packet loss rate (%)
120, 104, 88, 72,
56, 48, 40, 32,

24, 16, 9.6, 5.6,
4, 1.6, 0.8

0, 5, 10, 15, 20,
25, 30, 40, 50,

60, 70, 80, 90, 100
0 , 1, 5, 10, 15, 20

Table 3.3: Emulated link parameter range

Test-bed 2: University local area network (LAN)

The second test-bed shown in Figure 3.8, instead of emulated links, used the

university LAN as the network between the UD and the access router/diagnostic

server. This set-up was created to collect real-world data that would be identical

to any enterprise LAN network and private cloud network. Instead of a direct link

between the two end-points, this set-up introduced a multi-hop path with at least

three routers and a number of switches between them. The UD was connected to

LAN through a router that assigned a subnet IP address to the UD in one scenario

and used network address translation (NAT) to assign an IP in the second scenario.

This was done to capture the effects of NAT on NSS, as NAT is a common feature

in network set-ups.

We used the live network with subnets that were already being used by day-to-

day university activities, including a large number of students conducting their

studies. The data collection was done throughout the day and throughout the

semester so that there are variations in the network load. The data collected in this

Figure 3.8: Test-bed 2: Collects data over multi-hop paths in real-world enterprise
networks with live cross-traffic.
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Figure 3.9: Test-bed 3: Connects through ISP core network and ADSL access links.

test-bed was used in evaluating the accuracy of the developed techniques against

real-world data.

Test-bed 3: Monash University LAN+ISP ADSL

The third test-bed shown in Figure 3.9 was a complex set-up that included the

ISP network and ADSL connection. This test-bed collected data samples that are

closest to the scenario where a public user is accessing the diagnostic service. The

last-mile access link of the ISP is a complex connection with a number of factors

affecting the link performance. We used home routing equipment at the UD and

a commercially available ADSL connection to re-create a common networking

scenario. Due to the commercial implications around data usage, we limited the

scope of the data collection to TCP New Reno and conducted only one round

of sample collection (approximately 1000 samples). The sample collection on

this network is still ongoing and will continue during future work to be used to

evaluate complex scenarios.

3.4 Types of features

Even under exactly the same conditions, network connections always incorporate

a noise component. While the NSS extraction process yields unique signatures

for each fault, it is necessary to investigate the influence the statistical noise and

variations inherent in live end-to-end connection have on the stability of the
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features. The stability of a feature can be defined as consistent feature magnitude

across multiple samples collected over the same link under the same end-point
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Figure 3.10: Variance of normalised values of the first 50 features in NSSs for
30 samples when collected over a live network link with variations shown in
Figure 3.11a and Figure 3.11b. In Figure 3.10a and Figure 3.10b, the red line of
each feature marks the median while the bottom and top edges of the box mark
the 25th and 75th percentiles. First 50 features of the 460 NSSs features have been
selected as representative to clearly visualise the distributions.
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Figure 3.11: Link properties for the samples used in Figure 3.10

conditions.

As mentioned in Section 3.2, NSSs have 460 features. Figures 3.10a and 3.10b

show box plots of first 50 normalised features taken from 30 samples of NSSs with

write buffer and read buffer errors. To improve the clarity of the visualisations,

we have chosen only to visualise first 50 features as representative instead of all

460, although all of the features are being used for the analysis. These samples
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were collected over the live campus network with other active users. Figure 3.11a

shows the average bandwidths in MB/s, and Figure 3.11b shows the instanta-

neous latencies observed between the faulty UDs and the server during the data

collection.

In Figures 3.10a and 3.10b, the red line in each feature marks the median, while

the bottom and top edges of the box mark the 25th and 75th percentiles. These

two figures show the statistical variations of the features when collected over

end-to-end connections that had bandwidths between 12 MB/s to 16 MB/s and

RTT between 0.2 ms to 4 ms. From Figures 3.10a and 3.10b, we can clearly identify

three types of features.

Stable-significant features: These are features that have only a small variance

around the median with a clear deviation from the baseline. The features

remain stable within a range of bandwidths, as shown in Figure 3.11a and a

range of latencies, as shown in Figure 3.11b. These are the primary features

that contribute to a unique identification.

Stable-Null features: These are features that have small variance around the

median, yet show no deviation from the baseline. These features do not

contribute as much information as the significant features for a unique iden-

tification, but in combination with significant features, they are useful to

create unique feature patterns.

Unstable features: These features show a significant variation around the median.

Although machine-learning algorithms can compensate for a certain amount

of statistical noise, most of these features will have a negative impact on

diagnosis.

The figures show that for every fault, only a sub-set of features provides

consistent and valuable information for an identification. These sub-sets of features

also vary with the type of fault, as observable in Figures 3.10a and 3.10b. The
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large feature set, therefore, enables the NSS to characterise a wide range of faults

through a single representation. A subsequent “feature selection“ algorithm or

complexity reduction algorithm can be used to filter out null/unstable features for

individual fault types for use in an ML-based fault diagnostic system.

3.5 Link dependency of the features

The properties of the access link have a significant impact on the NSS. An analysis

of NSSs collected over different link conditions was performed to identify how

link variations can impact the signature.

Figure 3.12 shows the variance of first 50 normalised features in terms of box

plots taken from NSSs of the same fault over various links. The data was collected

using the laboratory test-bed where links with different maximum bandwidth and

minimum latency combinations were emulated. Figures 3.12a and 3.12b show

the feature variance for 200 sample NSSs collected over links with variable mini-

mum latencies of 5 ms-100 ms and constant maximum bandwidths of 5 MB/s and

15 MB/s, respectively. Figures 3.12c and 3.12d show the feature variance for 200

sample NSSs collected over links with variable maximum bandwidths of 100 kB/s-

15 MB/s and constant minimum latencies of 20 ms and 100 ms, respectively. First

50 features of the 460 NSSs features have been selected as representative to clearly

visualise the distributions. These experimental results show that whilst a small sub-

set of features remain link-independent, the majority of the features are affected

by link properties such as latency and bandwidth.

The capabilities of supervised ML systems are limited by the variations in-

cluded in the training samples. A diagnostic system can be trained with only a

small set of samples when the link properties remain relatively stable, as in the

case shown in Figure 3.11. In such a system, the features (filtered) are capable

of accounting for smaller variations in the network, thus allowing a successful

97



diagnosis. However, as Figure 3.12 shows, most features show a large variation

when considering significant changes in the link profile.
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Figure 3.12: Variance of normalised values of the first 50 features in NSSs when
samples are collected over links with different latency and maximum bandwidth
properties. First 50 features of the 460 NSSs features have been selected as repre-
sentative to clearly visualise the distributions.

3.6 Link-adaptive signature estimation (LASE)

As discussed in previous sections, NSS features become inconsistent when samples

are collected over links that have significantly different properties. Link character-
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Figure 3.13: Operational stages of LASE and diagnostic system training

istics, such as maximum bandwidth, minimum latency, packet loss, congestion and

packet reordering, change from network to network, which makes the portability

of a diagnostic system between networks challenging. Training a single diagnostic

system for exhaustive combinations of link parameters requires an impractically

large dataset collected over a wide range of link conditions. Consequently, there

is a trade-off between generalising the ML diagnostic system and minimising

the number of NSS samples required for training. Analytical modelling of the

performance relationships between link properties and connection characteristics

has been attempted in the literature [56] as a solution but has thus far proven

unsuccessful.z

To reduce the amount of training data needed and to avoid the need for a

complex analytical model, we propose the concept of link-adaptive signature

estimation (LASE).
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3.6.1 Operational overview of LASE

LASE is a regression-based estimation technique, designed for modelling the be-

haviour of a feature with changes in link conditions. This is achieved by collecting

a small set of samples for each UD fault, while varying link parameters within a

specific range. These samples are then used to model a feature estimator function ()

based on multivariate regression techniques. When NSSs are needed to train a new

diagnostic system for a particular network, these FEFs can be used to estimate the

features for the specific links (within the link parameter training range) and create

the NSSs for a specific fault. These link-specific signatures can then be used to train

the ML system. As discussed before, for every fault, features can be identified as

either stable or unstable. Prior to LASE training, the unstable features are filtered

from the NSSs, as these features can affect the consistency of signatures.

Figure 3.13 shows the two main operational stages of LASE: (i) FEF generation,

and (ii) training of the supervised ML system. The “capture” and “signature

extraction“ modules collect controlled healthy and faulty NSSs over different links

with delay, bandwidth, loss, etc. parameter combinations. These NSSs, together

with the link parameters, are then sent for regression training.

Regression is the process in which models (FEFs) are fitted to observational

data to identify the complex relationship between dependent variables (feature

values) and independent variables (link parameters). Assume that the number

of faults considered is p, each NSS vector is comprised of m features, and n sets

of NSSs are available for each of the p faults from k number of link parameter

combinations, each denoted by the vector zk. Then regression training samples for

each fault will be a n×m matrix of feature values and parameter labels as follows:
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

(f 1
1 , z1) (f 1

2 , z1) · · · (f 1
m, z1)

(f 2
1 , z2) (f 2

2 , z2) · · · (f 2
m, z2)

...
... . . . ...

(fn1 , zk) (fn2 , zk) · · · (fnm, zk)


Regression algorithms use each column; n samples of the feature fm collected

over k different links as the input and model a FEF to estimate the behaviour of

fm within the parametric range of zk. Consequently, once the FEFs are modelled

for every fault, a p×m matrix of FEFs as follows will be created. In this matrix,

each row is a vector of FEFs associated with a single fault. These FEF vectors are

then used to estimate the link-specific feature vector of a NSS.



FEF1
1 FEF1

2 · · · FEF1
m

FEF2
1 FEF2

2 · · · FEF2
m

...
... . . . ...

FEFp1 FEFp1 · · · FEFpm


We define a feature’s “predictability“ as the FEF’s ability to closely match the

estimated feature values with real sample data. To evaluate the predictability, we

use a common goodness of fit measure “coefficient of determination” (R2), which

is defined by R2 = 1− SSerr/SStot, where SSerr is the sum of squares of residuals

and SStot is the sum of the squared differences from the mean of the feature. R2 can

be between 0 and 1, with a value closer to 1 indicating a more predictable feature.

As not all features are perfectly predictable, the FEFs are tested for estimation

accuracy and only the FEFs of predictable features for each UD fault are stored in
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a database.

The regression technique largely dictates the accuracy of the model and is an

important design criterion. To build the FEFs, we used three different techniques:

(i) polynomial regression with least-square optimisation (Poly) [237], (ii) general

regression neural networks with Levenberg-Marquardt training (GRNN) [238, 239],

and (iii) support vector regression with radial-basis kernel (SVR) [140]. The details

of these methods can be found in the references.

When training a diagnosis system for a specific link, FEF-generated NSSs can

be used either entirely, or in combination with those collected over the live net-

work. Using LASE, diagnostic systems can be trained to suit the exact networking

environment, however dynamic, with a minimal set of sample data. LASE also

provides the adaptive capability to an ML-based diagnostic system where systems

can automatically alter the learning data sets, depending on the prevailing network

conditions.

3.6.2 Experimental evaluation of LASE

The performance of the LASE system was evaluated experimentally using network

data collected in the laboratory network test-bed shown in Figure 3.6 (TB-1 data

set). The LASE was evaluated for common bottlenecks and details of four cases

are presented here. We collected NSS samples whilst varying bandwidths between

100 kB/s-15 MB/s, and link delays between 0 ms-100 ms, which covers typical

residential access network performance to the high speed Intranet. Although

many link parameters affect the signature, at this stage, we have investigated only

bandwidth and delay variations, as they are the most common in access links. We

assume that links or intermediate devices do not suffer from any degradations.

Faults were emulated at the UDs, and the TCP traces were collected using

the capture module. Two datasets with varying link bandwidth and delay com-

binations were collected for the healthy and each of the faulty cases. The first
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Figure 3.14: Behaviour of “Total-cumulative-acknowledgements” feature over
different links for three UD problems.
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Figure 3.15: Feature behaviour estimation using LASE for “Total number of packets
sent“
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Figure 3.16: Feature behaviour estimation using LASE for “Average segment size“
of the connection

dataset was used for training the FEFs, and the second set was used to evaluate

the performance of the FEFs. The training samples were limited to 5 samples per

combination of 5 bandwidths, and 5 delay levels (k1 = 25, n = 125). Evaluation

samples were collected over links with parameter combinations that were not

used in training (k2 = 100, k2 6= k1), making a total of 2200 samples per fault for a
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UD fault Feature (FEF)
CF0 Healthy FEF1 tot.pkts
CF1 Write buff limit FEF2 ack.pkts
CF2 Read buff limit FEF3 RTT.3wh
CF3 SACK error FEF4 cum.ack
CF4 DSACK error FEF5 tri.dupacks
CF5 Read&write buff limit FEF6 avg.segm
CF6 Disabled timestamps FEF7 avg.win.adv
CF7 Winscale error FEF8 stream

FEF9 xmit.time
FEF10 pure.acks
FEF11 rexmt.data.bytes
FEF12 min.retr.time

Table 3.4: Key

statistically robust evaluation of FEF performance.

Figure 3.14 shows the estimated FEFs of the “Total-cumulative- acknowledge-

ment” feature for four UD cases. The healthy UD (Figure 3.14a) shows a flat surface,

as features are always normalised against the healthy baseline. Figures 3.14b, 3.14c,

and 3.14d show the behaviour of the features over the training parameter range

with respect to the healthy baseline. Figures 3.15, and 3.16 also show similar FEFs

for two other features, “Total number of packets sent“ and “Average segment size“

respectively. The figures show that the FEFs are different in every scenario, and

thus highlight the need to have the LASE mechanism in place to estimate the NSSs

to generalise a diagnostic system across dynamic networks.

Table 3.4 provides the notation that will be used in the following discussion.

We base the discussion of LASE performance on 12 features (FEF1, · · · ,FEF12) of

4 types of faults (CF1, · · · ,CF4), although the analysis was not limited to these

cases. Tables 3.5, 3.6, and 3.7 summarise the performance of LASE for the three

types of regression algorithms used.

From the results, we can clearly identify three main categories of features:

1. As shown in Table 3.5, features such as tot.pkts, ack.pkts, RTT.3wh, cum.acks,

and tri.dupacks can be predicted with high accuracy using all regression models.
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Example feature (R2)
Fault Reg. FEF1 FEF2 FEF3 FEF4 FEF5

Poly. 0.9865 0.9865 0.9793 0.9913 0.9877
CF1 SVR 0.9559 0.9559 0.9902 0.8908 0.9783

NN 0.9890 0.9890 0.9885 0.9959 0.9998
Poly. 0.9825 0.9825 0.9793 0.9740 0.9877

CF2 SVR 0.9694 0.9694 0.8669 0.8804 0.9779
NN 0.9980 0.9980 0.9911 0.9949 0.9997
Poly. 0.9939 0.9939 0.9793 0.9852 0.9846

CF3 SVR 0.9203 0.9203 0.9995 0.9221 0.9631
NN 0.9877 0.9877 1.0000 0.9821 0.9861
Poly. 0.9939 0.9939 0.9793 0.9852 0.9846

CF4 SVR 0.9203 0.9203 0.9995 0.9221 0.9631
NN 0.9877 0.9877 1.0000 0.9821 0.9861

Table 3.5: Estimation performance of LASE measured with R2 for predictable
features

Example feature (R2)
Fault Reg. FEF6 FEF7 FEF8 FEF9

Poly. 0.9948 0.2600 0.9935 0.9835
CF1 SVR 0.9994 0.0041 0.9083 0.8143

NN 0.9991 0.3947 0.9999 0.9970
Poly. 0.9948 0.9944 0.9928 0.9829

CF2 SVR 0.9994 0.9695 0.9021 0.8301
NN 0.9999 0.9870 0.9999 0.9996
Poly. 0.8934 0.3947 0.5742 0.9875

CF3 SVR 0.8936 0.0019 0.1111 0.8705
NN 0.8925 0.0296 0.5035 0.9921
Poly. 0.8921 0.6254 0.8246 0.3653

CF4 SVR 0.8918 0.4366 0.1111 0.4705
NN 0.8978 0.7506 0.5035 0.5921

Table 3.6: Estimation performance of LASE measured with R2 for fault-specific
predictable features

ML systems such as SVMs are sufficiently generalised against the < 2% error of

prediction, and the smaller error in most these features does not affect the final

outcome.

2. Table 3.6 shows that feature FEFs xmit.time, avg.segm, stream, and avg.win.adv

are only successful in predicting the features with certain faults (marked in grey).
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Example feature (R2)
Fault Reg. FEF10 FEF11 FEF12

Poly. 0.3608 0.0963 0.2362
CF1 SVR 0.3172 0.0038 0.0156

NN 0.2292 0.2111 0.0582
Poly. 0.3465 0.1355 0.0141

CF2 SVR 0.2536 0.0001 0.0013
NN 0.1177 0.0436 0.1697
Poly. 0.1220 0.3485 0.30018

CF3 SVR 0.1302 0.0314 0.0013
NN 0.0356 0.2903 0.0717
Poly. 0.1520 0.0567 0.1870

CF4 SVR 0.4502 0.0038 0.0323
NN 0.2456 0.2351 0.1160

Table 3.7: Estimation performance of LASE measured with R2 for unpredictable
features

Feature
Fault FEF1 FEF2 FEF3 FEF4 FEF5
CF1 93.245 92.456 96.234 90.543 95.625
CF2 89.567 93.256 97.234 90.899 94.563
CF3 90.164 93.975 96.343 91.237 94.089
CF4 92.456 91.238 98.674 92.053 97.541

Table 3.8: Estimation accuracy (in %) of Poly-based FEFs trained with test-bed data
for predicting NSSs collected over the live network

These particular FEFs are used only to train the systems to detect that particular

UD fault. This is because some faults can adversely affect particular features

to the point that these features become sporadic. From extensive testing we

have conducted using large datasets collected from multiple networks, we have

identified that these unpredictable features are only dependent on the type of

fault. However, this does not guarantee that, in some network environments

such as mobile networks, other factors can affect the feature predictability, and

some features might join the unpredictable group.

3. Table 3.7 shows that none of the models succeeded in predicting features such

as pure.acks, rexmt.data.bytes, and min.retr.time. These features only have a
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FEF1 FEF4
Fault Reg. TT AFET TT AFET

Poly. 41.4152 0.0031 34.0945 0.0030
CF1 SVR 1452.44 0.1933 1544.88 0.2019

NN 24.7756 0.3056 29.8138 0.3037
Poly. 38.7863 0.0032 36.4268 0.0031

CF2 SVR 1408.31 0.2063 1476.53 0.2163
NN 27.2962 0.2930 25.9615 0.3292
Poly. 34.4573 0.0029 35.5837 0.0033

CF3 SVR 1659.25 0.2474 1733.46 0.2445
NN 24.3569 0.2887 36.1969 0.3142
Poly. 29.9123 0.0029 34.2792 0.0032

CF4 SVR 1579.69 0.2474 1659.87 0.2556
NN 24.4077 0.2887 25.7183 0.3098

Table 3.9: Train time (TT ) of FEF and average feature estimation time (AFET ) in
LASE (in milliseconds)

loose correlation with link parameters and are considered universally unpre-

dictable.These FEFs are discarded as estimated values from these FEFs can

negatively impact a diagnostic system’s accuracy.

Tables 3.5and 3.6 suggest that the models created using Poly performed slightly

better than NN and SVR. However, NN and SVR are more suitable than the

simple Poly technique to create complex models with higher dimensionality when

more link parameters are considered. In addition, SVR is more robust when

training samples are contaminated with outliers, especially when collected over

live networks.

Trained only using test-bed data, FEFs are also capable of accurately estimating

features in NSSs collected in the live network. Table 3.8 shows the accuracy of five

predicted features in four fault cases when compared to the real network NSSs.

These features were chosen as they were determined to be predictable across

all four faults, as shown in the Table 3.5. The prediction accuracies in Table 3.8

demonstrate the successful estimation performance of the FEFs. This capability

offers the unique advantage of training the FEFs in a controlled test environment
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before being deployed in real-world networks.

The time taken for training and estimation is important, considering the large

number of regression models involved. We used two parameters; first, train time

(TT ) to define the time taken to model a single FEF, and second, average feature

estimation time (AFET), to define the time it takes to estimate a single feature

value. Both these measurements are taken in milliseconds, and the ensuing results

are shown in Table 3.9. Since the number of total FEFs is m × p, the time taken

to train the complete system is
∑p

i=1

∑m
j=1 TT(i, j), which approximates to 45 s for

Poly, 2000 s for SVR, and 34 s for NN given m = 320 and p = 4. Although FEF

training is not a frequent event, the results show that both the Poly and NN models

are significantly faster to train than SVR. In contrast, AFETs are crucial as they

determine the time needed to produce new NSS data. The table shows that Poly

has the fastest and NN has the slowest estimation performance for a single feature.

The worst-case average delay with NN is only 390 ms for estimating all NSSs in a

m = 320 and p = 4) scenario.

With only 125 samples per UD fault, LASE extended the NSSs (with filtered

features) and consequently, the diagnostic capability over links with a bandwidth

range of 100 kB/s-15 MB/s and delay range of 0 ms-100 ms. Even in the worst

case, the estimation delays for the whole system remain small. These results

demonstrate that with LASE, NSS-based diagnostic systems can be adapted to new

access links and links with time-varying properties without sacrificing significant

performance.

3.7 Conclusion

We have proposed a technique to uniquely characterise network soft failures in

UDs towards the creation of an automated fault diagnostic system. To create the

NSSs, we combined an exhaustive set of aggregated TCP statistical features that
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are diverse and robust. The TCP streams were collected on-demand and with fixed

size transfers to minimise the variables and improve the comparability. The NSSs

created for various faults showed the capability to uniquely characterise the faults

for an effective identification. Furthermore, the NSSs created over varying link

conditions showed the level of impact the link has on feature stability and created

sub-sets of significant, null, and unstable features.

Next, we discussed the methodology used for collecting data throughout this

research. Raw packet traces have been captured by injecting faults into actual

UDs and we presented number of test-beds that we have used to collect data. The

data set included 17 different UD scenarios including healthy UDs and faults, 8

different TCP variations at UD and 3 different test-beds. Link emulation was used

to precisely control link conditions in the laboratory test-bed, and live networks

with increasing complexity were used in the other two test-beds to collect more

realistic data with cross-traffic, congestion and variations.

We then introduced LASE to estimate NSSs for a continuous range of link

properties by creating FEFs using a small dataset and multivariate regression

techniques. The trained FEF models were subsequently used to generate NSSs

anywhere within the training range. This approach minimises the number of NSSs

needed to train diagnostic systems for link variations. Our evaluations with both

test-bed and live network data demonstrate the successful prediction capabilities

as well as the acceptable computational delays of LASE. The results also show

that not all features can be predicted successfully, and if LASE is performed, those

unpredictable features should be discarded from the NSS.
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CHAPTER FOUR

FAULT INFERENCE AND CLASSIFIERS

In the context of network diagnosis, the process of analysing a trace (or an NSS cre-

ated from the trace), identifying the trace behaviour, and interpreting the unique

characteristics to determine the root causes is called “inference“. In traditional

diagnostic practice, the inference process is usually carried out by network pro-

fessionals to identify the root causes. Instead of a specific set of rules, they are

primarily dependent on their experience and the expected baselines to locate arte-

facts by exhaustively analysing trace data [34, 37]. The human cognitive ability to

derive the relationship between previously seen events to a slightly different yet

related event is a challenge to replicate. In addition, the subtle dissimilarities in an

artefact produced by TCP variants and different UDs also have to be compensated.

Section 2.2.1 discussed the traditional practices of diagnosis, especially using TCP

traces.

In this chapter, we introduce a new inference method using NSSs and ML-

based classifiers to uniquely identify the root causes of network performance

problems. The motivation is to create a methodology that is automated, scalable

and modular so that it can be utilised in creating complex diagnostic systems.
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Embedded artefacts in NSSs

As discussed in Section 2.8, the TCP layer directly observes most network events

from the middle of the protocol stack. Network problems have different effects

on the packet stream, and the NSSs generated from the TCP packet traces contain

anomalies that are unique to the fault. These anomalies are called the “artefacts“

and are the basis to separate a healthy UD from a faulty UD. In Chapter 3, we

discussed in detail how the NSSs are generated. Figure 3.2 shows some of the NSSs

with the artefacts unique to each fault. These unique artefact patterns provide the

key to the diagnosis of the specific root causes.

4.1 Pattern classifiers for inferring from NSSs

The proposed inference method uses supervised ML-based pattern classification

to identify artefacts unique to different types of faults. More details on supervised

machine learning can be found in Section 2.7.1. The labelled NSSs, collected on live

networks or generated by emulating network faults in controlled environments,

are used to initially train pattern classifiers to create generalised models of each

fault. Subsequently, these trained models can be combined to create an end-to-end

comprehensive diagnostic system.

The design criteria of the key elements to overcome the challenges presented

by an inference problem are as follows:

• Classifier boundaries are well balanced between generalisation and accuracy.

Generalisation is essential, as NSSs with the same artefacts can be slightly

different, depending on the network conditions, TCP variant, and the UD

type.

• Robust against inaccurate training instances and irrelevant attributes because

of the random nature of the networks.
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• Robust against interdependent attributes because of the interdependency of

TCP trace parameters.

• Automated feature selection and parameter selection.

• Easily trainable with a small number of samples.

The learning algorithm in a classifier is a critical choice for the performance

of the overall diagnostic system. For this purpose, we first identified candidate

algorithms - Decision Trees, Artificial Neural Networks (ANNs), Naı̈ve Bayes (NB),

k-Nearest Neighbour (kNN), and Support Vector Machines (SVMs), conducted a

comparative analysis, and tested their performance with respect to generalisation,

classification accuracy, number of training samples required, and training speed.

Based on the observations from these comparisons and the literature review, we

chose the SVM approach because of its superiority in yielding the most accurate

results. It also exhibits higher tolerance and requires fewer training samples. The

comparative performance of the methods is shown in Figure 2.5.

4.2 SVM-based fault classifier module (FCM)

Using SVM as the pattern classification algorithm, we introduce a “fault classifier

module“ as shown in Figure 4.1. Each fault classifier module is designed to

detect artefacts from a single type of fault using L2 soft-margin, non-linear SVM

classifiers.

The module operates in two phases: first, the training phase creates an appro-

priate classifier model using trace data samples collected from known faults. The

training phase starts with feature extraction, raw signature generation, and data

pre-processing to create the NSS. The process of creating a NSS from a raw packet

trace was discussed in detail in Chapter 3. The most relevant features for the

particular fault being detected are then selected from the NSS and these features
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Figure 4.1: SVM-based fault classifier module for artefact identification. Each
classifier detects only a single fault with parameters, and a feature list is optimised
for the specific problem. This module implements the basic inference method,
which is extendible using a combination of modules trained using various data
sets to scale the diagnostic system.

are used to train the SVM. All these stages are equally vital for building a robust

classification model with the best accuracy. During the diagnostic phase, a raw

traces sample is sent through NSS generation first, and the trained classifier model

is then used to determine the artefacts hidden within the NSS.

4.2.1 Feature selection

Although the NSS format is identical for every sample, only a particular subset

of features contributes to the artefact. Unnecessary features increase the compu-

tational complexity [240], create over-fitting of classifier boundaries [241], and

reduce classification accuracy [242]. Therefore, insignificant features should be

removed from the training data. In this study, we use an automated feature selec-

tion method to select the most suitable feature subset for a particular classifier. In
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addition, if the LASE technique has been utilised in creating the training data, the

unpredictable and unstable features must be removed from the NSS as they are

not reliable.

There are two main categories of feature selection algorithms: (i) filters which

use statistical characteristics of features, and (ii) wrappers which cross-validate

all variations of feature subsets to select the best set. Wrappers are considered

to perform better than filters, but are computationally expensive. Our proposed

method, as shown in Figure 4.2, similar to work discussed by Xing et al. [243] and

Das [244], follows a hybrid approach (between filter and wrapper) for isolating

the best feature subsets. We first use a filter technique, Student’s t-test (two-

sample sample t-test) (implemented similar to [245]), to assess the significance of

every feature for separating the two classes. Next, the features sorted in order of

significance are cross-validated by incrementing the number of features selected

for each class (wrapper technique) against test data to identify the best number

of features required for each classifier. Student’s t-test is a common statistical

data analysis procedure for hypothesis testing, and determines whether two

independent populations have different mean values for a specified extent. The

feature selection process reduces the q-dimensional feature vector in Eq. (4.1) to

m-dimensions (m < q), where the combination of m features creates the artefact.

Figure 4.2: Hybrid feature selection technique for isolating the best feature subset
of the artefact.
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This process creates a new signature database of classifier-ready NSSs (Θ).

4.2.2 SVM classification

An SVM classifier module is used to model the best separating boundary between

the “faulty“ class and the “other“ class. Here, the other class includes healthy NSSs

and other known fault NSSs except the specific NSSs, from the fault being detected.

n trace samples in Θ are used for training the SVM with the class label +1 for the

faulty class and -1 for the other class. For an m-dimensional input feature vector,

the resultant class boundary is a m-dimensional hyper-surface that separates the

two classes with the maximum margin.

The artefacts of the same class show subtle variations due to the practical

data collection process. Different TCP variants and device platforms also deviate

from some of the artefact parameters with respect to the training samples. We

use L2 soft-margin SVMs (Eqs. (4.3) and (4.4)) instead of hard-margin SVMs

(see Chapter 2.7.2 for details) in each classifier module to create generalised class

boundaries that offer better classification accuracy against deviated artefacts (see

Figure 4.3b). The separating class boundaries can either be linear or non-linear,

depending on the artefact type. We use kernel mapping (Eq. (4.6)) with kernel

functions (Eq. (4.8)) chosen based on the classification problem of each classifier

module. The SVMs are trained by solving the QP problem (Eq. (4.5)) and the

resulting class boundaries and the models are stored in each classifier module.

4.2.3 Training the fault classifier

The binary-SVM is trained to classify data into two classes: faulty and other.

Training requires two sets of trace samples, each from the two classes.

After NSS generation and feature selection, the training data set for the particu-
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(a) Hard-margin SVMs

(b) Soft-margin SVMs

Figure 4.3: Comparison of hard-margin SVMs for classification of linearly separa-
ble classes and soft-margin SVMs for classifying overlapping classes.
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lar FCM Θ of n instances is in the form of

(Θ) = {(xi, yi)|xiε<m, yiε{+1,−1}}ni=1 (4.1)

with xi being an m-dimensional feature vector and class label yi, where yi = +1

for the faulty class and yi = −1 for the other class, to which each xi belongs. For

example, a sample trace (i = 1) from a faulty class, with four features (m = 4)

is denoted by {0.5, 0.03, 0, 0.99,+1}i=1 (e.g. 1). For L2 soft-margin and kernel-

mapped SVMs, anm-dimensional input feature vector results in anm-dimensional

hyper-surface class boundary. The hyper-surface separates the two classes with

the maximum margin.

For the data set given in Eq. (4.1), a linear decision function

D(X) = wTXi + b for i = 1, ..., n, (4.2)

where, w is the m-dimensional weight vector exist and the optimum hyperplane is

found by minimising

Q(w, b, ξ) =
1

2
wTw +

C

2

n∑
i=1

ξpi (4.3)

with respect to w,b and ξ, subject to the inequality constraints:

yi(wTxi + b) ≥ 1− ξi for i = 1, ..., n and ξi ≥ 0 (4.4)

where, non-negative ξ is called the slack variable and allows a degree of insepa-

rability between the two classes and p = 2 for L2 soft-margin SVM. This forms a

convex quadratic programming problem (QP) [246] and is solved after convert-

ing the constrained problem given by Eqs. (4.3) and (4.4) into an unconstrained
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problem:

L(w, b, α, ξ) =
1

2
wTw +

C

2

n∑
i=1

ξ2 −
n∑
i=1

αi(yi(wTXi + b)− 1) + ξi), (4.5)

where αi(≥ 0) are the Lagrange multipliers introduced to enforce the positivity of

the ξi. The optimal saddle point (w0, b0, α0, ξ0) is found where L is minimised with

respect to w, b and ξi and maximised with respect αi(≥ 0) following Karush-Kuhn-

Tucker (KKT) [247] conditions. This is called the training of SVM.

However, to enhance the separability of the linearly inseparable data, using

the non-linear vector function g(x) = (g1(x, ..., gl(x)T, the original m-dimensional

input vector x is mapped into the l-dimensional feature space. The linear decision

function for the obtained l-dimensional feature space is given by Eq. (4.6).

D(x) = wTg(x) + b (4.6)

where, w is the l-dimensional weight vector, and b is the bias term. According

to the Hilbert-Schmidt theory, the mapping function g(x) that maps x into the

dot-product feature space satisfies

K(x, xi) = g(x)Tg(xi) (4.7)

where K(x, xi) is called the kernel function. The kernel function avoids the actual

mapping g(x) and directly calculates the scalar products g(x)Tg(x) in the input

space. We cross-validated and analysed the performance of the classifier for

multiple kernel functions K(x, xi) in Eq. (4.8) to select the most suitable kernel for

the classification problem.
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K(x, xi) =(xT · xi) Linear kernel (4.8a)

K(x, xi) =(xT · xi + 1)2 Quadratic kernel (4.8b)

K(x, xi) =(xT · xi + 1)3 3rd degree polynomial kernel (4.8c)

K(x, xi) = exp(−‖x− xi‖2)/2σ2 Gaussian RBF kernel (4.8d)

4.2.4 Diagnosing faults

At the end of the training phase, a classifier module contains (i) filtering param-

eters (scale factors) derived during NSS normalisation, (ii) a feature list chosen

during feature selection, and (iii) a classifier model created using SVMs. During

the diagnostic phase, a trained module is used to detect if the particular fault exists

in a trace taken from an undiagnosed source. Packet traces are captured using the

same trace collection technique as before, and then undergo signature extraction,

data transformation to create the NSS, and feature filtering using the stored values.

The SVM classifier then classifies the NSS to the corresponding class and outputs

a numerical +1 if the sample contains the specific fault the FCM was trained for

or −1 if it does not. The class labels are then assigned to the trace accordingly.

Each module is responsible for detecting a single fault and will only indicate the

presence or absence of that particular fault.

4.3 Advantages of the proposed method

The proposed inference method with fault classifier modules offers many advan-

tages over other methods proposed in the literature, as follows:

(i) SVM binary classifiers offer extremely accurate classification compared to

other single multi-class or heuristic-based classifiers.
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(ii) Classifiers can be quickly trained with only a few data samples.

(iii) Diagnostic capability evolves with the diversity of the fault signature databases

instead of the inference method. This is in contrast to most other proposed

diagnostic solutions, where the inference methods can only identify a specific

type or group of issues.

(iv) Users can collaborate to create common signature repositories and new diag-

nostic modules, encompassing a wide range of faults, networks and device

platforms.

(v) The method relies solely on packet traces collected at the endpoints and is

implemented as an client-server application. This provides flexibility for the

operator to easily deploy diagnostic systems at any desired network location

without significant modification to servers or access routers.

(vi) Using this method, UDs and systems can be diagnosed without remote access

or physically logging on to the systems. This is a capability unavailable in

many network diagnostic tools [33, 36].

(vii) The proposed technique avoids the idiosyncrasies of individual TCP im-

plementation and relies only on connection statistics to detect the artefacts.

This enables us to create a diagnostic technique, which is in most cases TCP

agnostic.

(viii) The inference technique considers overall trace behaviour rather than TCP

negotiation headers to avoid misleading header and flag information [51,

211].

(ix) Modules trained for different types of faults can be combined to create com-

plex diagnostic systems targeted to specific networks and applications.
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4.4 Performance evaluation of FCM

The classification performance of the individual FCMs was evaluated using the

test-beds introduced in Section 3.3. We created two datasets, one from test-bed 1,

which was a laboratory network with emulated links (TB-1 data set) and another

from test-bed 2, which used the live campus network (TB-2 data set). The TB-

1 dataset was collected over an emulated, full duplex, wired access link with

80 Mb/s bandwidth, 10 ms delay with no packet loss and no packet reordering.

The TB-2 dataset was collected over a number of days around the clock, to include

network peak traffic periods and low traffic periods. Table 4.1 shows the list of

15 scenarios we created at the UD. We collected data from 14 faulty conditions

(CF1-14) and a healthy UD (CF0). For both TB-1 and TB-2 datasets, we collected

data using the 8 TCP variants listed in Table 3.2 as they are used in many common

devices. We collected 100 trace samples for each unique fault-TCP combination,

and the final dataset included 12, 000 traces from TB-1 and 12, 000 traces from TB-2.

First, the individual FCMs were trained to detect a single CFx condition using

Fault Description
CF0 Healthy
CF1 Disabled SACK error
CF2 Insufficient write buffer
CF3 Insufficient read buffer
CF4 Disabled D-SACK error
CF5 TCP timestamps are not working/in error
CF6 Window scaling error
CF7 Limited reordering threshold
CF8 Link-UD speed mismatch
CF9 Link-UD speed mismatch & duplex mismatch

CF10 UD firewall causing packet loss
CF11 UD firewall causing packet delay
CF12 Overloaded UD CPU
CF13 Overloaded UD memory
CF14 UD HDD i/o overloaded - faulty

Table 4.1: Key: List of faults
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the TB-1 data set. We used data from all the TCP variants, i.e. 800 samples per

fault, during both training and testing. As there were sufficient data, we conducted

4-fold, 5-fold and 8-fold cross-validation to obtain a statistically robust result. In

k-fold cross-validation, the original dataset was randomly partitioned into k equal

size sub-sets. Of the k sub-sets, a k-1 sub-set was retained as the validation data for

testing the model, and the remaining set was used as training data. The training

dataset included 200, 160, and 100 samples respectively. The cross-validation

process was then repeated k times (the folds), with each of the k sub-sets used

exactly once as the training data. The k results from the folds were then averaged

(or otherwise combined) to produce a single estimation. The advantage of this

method over repeated random sub-sampling is that all observations were used for

both training and validation, and each observation was used for training exactly

once. We used the four types of SVM kernels given in Eq. (4.8) to evaluate how

each kernel performs against the NSSs.

Figures 4.4 and 4.5 show the variation of detection accuracies against the

number of selected feature sets for two faults, insufficient read buffer (CF3) at

the UD, and link-UD speed mismatch & duplex mismatch (CF9) respectively.

Both figures show a similar pattern, with the detection accuracy peaking around

34 features for CF9 and 22 features for CF3. The selection of the kernel has a

significant impact on the overall system performance when the FCMs are used in

a full diagnostic system. It is clear from the graphs that the Gaussian RBF kernel

consistently outperformed the other kernels, quadratic kernel being the second

best, then the linear kernel and the 3rd degree polynomial kernel showed the

worst performance. CF9 FCM achieved an accuracy of 98.21% with a 34 feature

sub-set, and CF3 FCM achieved an accuracy of 93.37% with a 22 feature sub-

set. A key advantage of the FCM concept is the ability to select the optimal set of

parameters for the specific detection task. FCMs independently select the optimum

feature sub-set and the best kernel for the specific detection task to achieve the
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Figure 4.4: Classification accuracy variation of CF3 FCM with feature sets for
different SVM kernels.

best possible detection accuracy. If the inference method used a universal set of

parameters similar to most systems reported in the literature, we would only be

able to achieve a 91.86% accuracy for the CF9 FCM (assuming we set the feature

sub-set to 22 features throughout). In summary, with the selection of optimum

FCM parameters, the modules were capable of detecting the fault with a high

degree of accuracy. Both Figures 4.4 and 4.5 show the FCM detection accuracy

only marginally increases after the initial peak and then starts to decrease as

the feature sub-set increases. Given that additional features add complexity to

the model, this marginal increase in performance can be offset by the loss of

classifier generalisation capability, especially when deployed in dynamic network

environments. This is visible in the results from the decreasing accuracy due to

the over-fitting of the classifier boundary to tightly fit the training data.

The Table 4.2 shows the peak detection accuracies achieved for all 15 FCMs

and their respective parameters. The results show that the FCMs are capable
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Figure 4.5: Classification accuracy variation of CF9 FCM with feature sets for
different SVM kernels.

of detecting the faults embedded in the NSSs across all the 14 faults with high

accuracy and also successfully detected the healthy UDs with 97.87% accuracy.

The lowest detection accuracy was observed with CF4, D-SACK error, which was a

result of the NSS being very close to SACK error NSS. However, even for the most

complex case, we achieved an accuracy of 90%. The required feature sub-set was

different between the FCMs as some complex NSSs required additional features to

discern the fault from the rest of the NSSs. In most cases, the Gaussian RBF kernel

offered the best performance, except in CF1 and CF2, where the linear kernel

offered the best performance.

Following the same training criteria, we trained another set of FCMs with data

collected from TB-2, the live network. The live network NSS features showed

a larger variation due to the dynamic nature of the traffic, especially due to the

highly congested links during peak hours. This dataset was used to demonstrate

the robustness of FCMs in live networks with cross traffic and congestion. The
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Fault TB-1
lab network

Optimum
features

TB-2
live network

Optimum
features

CF0 97.87 12 95.74 10
CF1 98.25 34 95.46 34
CF2 98.46 26 96.01 22
CF3 93.56 22 91.77 22
CF4 90.32 66 88.24 50
CF5 96.53 42 94.2 34
CF6 94.3 50 92.33 58
CF7 99.02 18 97.11 22
CF8 95.73 22 93.48 30
CF9 96.58 18 93.7 42

CF10 98.21 34 95.72 34
CF11 97.32 30 95.79 50
CF12 93.87 74 91.93 90
CF13 97.58 58 95 74
CF14 95.56 42 92.89 50

Table 4.2: FCM classification accuracy and optimum feature sets for mixed TCP
data set collected from test-bed 1 and test-bed 2.

statistical and holistic nature of the NSS and the SVM classifier generalisation

successfully offset the effects of the dynamic nature of the network. Table 4.2

shows that all the UD conditions were successfully identified by each FCM with a

high degree of accuracy, ranging from 88.24% – 97.11%. The detection accuracies

were slightly lower than those for the laboratory network, due to the stable, more

controlled conditions in the laboratory network.

The evaluation to this point used a dataset that had samples from all TCP

types. However, in the worst case, training data might not be available from a

number of TCP types, specially if the training data is collected on a more restricted

network. To evaluate the worst-case performance of the FCMs, we trained two

sets of FCMs with TB-1 and TB-2 datasets, but used only a single type of TCP for

the training dataset. As TCP New Reno is the most commonly used TCP in the

world, we used NSSs with New Reno at the UD for training and used all the other

NSSs with 7 different TCP types for testing the performance. Table 4.3 shows the

overall accuracies achieved for detecting each case for both datasets. The results
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Fault

TB-1
lab network,
mixed TCP
training set

TB-1
lab network,
single TCP
training set

TB-2
live network,
mixed TCP
training set

TB-2
live network,

single TCP
training set

CF0 97.87 95.63 95.74 94.5
CF1 98.25 96.11 95.46 94.32
CF2 98.46 96.29 96.01 94.84
CF3 93.56 90.6 91.77 89.81
CF4 90.32 87.49 88.24 86.41
CF5 96.53 93.91 94.2 92.58
CF6 94.3 92.13 92.33 91.16
CF7 99.02 96.11 97.11 95.2
CF8 95.73 93.31 93.48 92.06
CF9 96.58 94.03 93.7 92.15
CF10 98.21 95.85 95.72 94.36
CF11 97.32 94.43 95.79 93.9
CF12 93.87 90.88 91.93 89.94
CF13 97.58 95.08 95 93.5
CF14 95.56 93.53 92.89 91.86

Table 4.3: Comparison of FCM classification accuracy when trained with mixed
TCP data set vs TCP New Reno, single TCP data set and tested with mixed TCP
data set.

show that, whilst the accuracies are slightly lower than those for the mixed TCP

training datasets, FCMs are still capable of detecting the faults with a high degree

of certainty. The figures from the laboratory network show an accuracy variation

between 87% – 96% and those from the live network show an accuracy variation

between 86% – 95%. Given that this was a worst-case scenario, the FCMs are still

capable of achieving acceptable accuracies for a diagnostic system.

4.5 Conclusion

In this chapter, we proposed an inference method using machine learning-based

pattern classification to identify artefacts unique to different types of faults. Using

L2-soft margin SVM, we created fault classifier modules, which were used to

identify a single fault. The FCM was trained using NSSs to create a class bound-
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ary that is unique to the particular fault and capable of automatically detecting

similar NSSs when sent through the classifier at the diagnostic stage. Since NSSs

contain many features that do not provide any information to separate the two

specific classes, we introduced a hybrid feature selection technique using filters

and wrappers to reduce the signature feature set.

During the performance evaluation, we used data from 14 different faults and

healthy UDs collected from two test-beds to demonstrate the diagnostic accuracy

of the individual FCM modules. We demonstrated the effects of feature selection

and the impact various TCP types can have on the FCMs. The results show that

FCMs can be used to reliably identify individual faults through artefacts embedded

in the NSSs. These FCMs provide the basic building blocks necessary to build

more complex and comprehensive diagnostic solutions.
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CHAPTER FIVE

AUTOMATED INFERENCE SYSTEM
FOR DIAGNOSING SOFT-FAILURES

IN USER DEVICES

In the previous chapter, we introduced the design of a fault classifier module (FCM)

that performed automated fault inference using NSSs and supervised ML. A single

module has been designed to detect a single fault and can be combined to diagnose

multiple failures. In this chapter, we introduce IAND-k, an Intelligent Automated

Network Diagnostic system for known problem diagnosis with the capability

to significantly reduce the time between problem reporting and resolution for a

network service provider or administrator. The system we propose (i) uses FCMs

for root cause diagnosis, (ii) detects faulty links, and (iii) specifically focuses on

identifying root causes of the UD faults.

5.0.1 IAND-k system

An overview of the system is shown in Figure 5.1. Whilst the comprehensive

IAND-k system includes both link problem diagnosis and UD fault diagnosis, the

scope of the present research is limited to UD fault diagnosis. The system which is

the focus of this discussion is marked in grey in Figure 5.1 and for clarity, will be

called IAND-kUD.

Most network diagnostic systems today follow a bottom-up design approach,
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where a particular algorithm is used to look for a specific anomaly in the packet

trace. In contrast, the IAND-k system follows a top-down design approach, where

a common inference method using FCMs has been utilised across the entire system,

but each FCM is specifically trained to diagnose an individual fault. This design

offers a number of unique advantages as follows:

(i) The system is more manageable, since a common core inference method is

utilised across the whole system.

(ii) Classifier parameters are chosen independently for each module, depending

on the complexity of the artefact and the classification problem. This ap-

proach offers better accuracy compared to a single set of classifier parameters

catering to all types of faults. As the classifier has been parametrised, each

module can be fine-tuned to optimise its sensitivity to a particular fault.

(iii) The inference method can be upgraded across the whole system and the

system can be easily re-trained due to its modular design.

(iv) The system can be extended by adding new modules instead of changing the

core inference algorithms in the entire system.

(v) The system’s scalability can be automated by simply replicating an inference

module and training with new data.

(vi) Each module can be more easily re-trained compared to a complete system

in case of a training error.

The IAND-k system can be adopted to work with most types of access networks

and enterprise networks to detect a wide range of UD faults by changing the

training dataset.

132



5.0.2 Operational overview

The operational overview is shown in Figure 5.1. The IAND-k system contains

three major cascading classifiers. Given that the access router is optimised for

the best possible connection, performance problems experienced by the end user

can either be a result of an access link/path problem or a UD problem. First, the

system has to determine whether the link connecting the UD to the access router

is faulty and is the cause of the performance problem experienced by the user. The

link problem detection (LPD) classifier simply reports whether a link is operating

as expected. If the link is found to be faulty, the problem needs to be identified,

and the root cause needs to be fixed. Then the link fault detection (LFD) classifier

is responsible for identifying the exact root cause of the link problem. The LFD

classifier design is beyond the scope of the present research, and we have left the

automatic diagnosis of the access link problem to a future study. When the link

faults have been diagnosed and resolved, the client fault diagnostic (CFD) classifier

is run to identify the root causes of performance problems in the UD.

(a) IAND-k training phase

133



(b) IAND-k diagnosis phase

Figure 5.1: Operational overview of the IAND-k system: Link problem detection
(LPD) classifier identifies packet traces collected over faulty links. The link fault
diagnostic (LFD) classifier and client fault diagnostic (CFD) classifier diagnose
the exact root cause of the connection problems. The grey components are the
main focus of the proof-of-concept user device diagnostic system (IAND-kUD), as
link/path problem diagnosis is beyond the scope of the present research.

The IAND-k system has two stages of operation: (i) the training phase (see

Figure 5.1a), and (ii) the diagnosis phase (see Figure 5.1b). During the training

phase, labelled data samples are used to train the system classifiers to detect

various known faults in the particular network. Depending on the link type and

the data availability, the LASE module can be engaged to generate additional

training data. Then all the classifiers are trained by training individual FCMs and

setting the appropriate parameters such as the selected feature set and classifier

bounds.
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During the diagnosis phase, users experiencing performance issues engage the

system through a web interface. The tool first loads the capturing modules into the

user device and collects a TCP packet trace of a stream of data between the user

device and the access router. Details of the trace collection mechanism have been

discussed in Section 3.2. The captured packet trace is then converted to an NSS.

This NSS is subsequently sent through the classifiers, undergoing feature filtering

and classification. The output at each classification stage is a diagnostic report

which outlines the possible issues. This system focuses only on the diagnosis,

while the actual fix for the issue and the resolution process are outside the scope

of this system.

Deployment

The IAND-k system is ideally suited to diagnose a UD directly connected to the

access router through the last-mile access link for best diagnostic accuracy. A

simple connection between the access router and UD results in clearer NSSs and

more consistent diagnosis. NSSs have a higher noise component as the number of

hops and bandwidth-delay products increase. The system uses the packet traces

of a TCP stream that runs on an on-demand basis between the user device and

the service provider router, as shown in Figure 5.2. The system deploys trace

collection/capture modules at the access router and once engaged, on the user’s

device. The diagnostic system can be co-located with the access router, but can be

located in a dedicated centralised location if servicing a number of access routers.

The collected traces are then sent to the IAND-k server to perform the diagnosis.

5.0.3 Link problem detection (LPD) classifier

The LPD classifier determines if the connection problems experienced by the

user are caused by a faulty access link. It detects the artefact patterns which

exist only when a link performance degrades from the expected baseline. The link
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Figure 5.2: Deployment of the IAND-k system in a network operator environment.

performance problems may be caused by many phenomena (including unexpected

packet losses and excessive delays). We define an access link performing at the

expected baseline as a healthy access link, whereas a link with degraded performance

is a faulty access link. The performance expectation of a healthy link is network-

specific. The operator has the freedom to train several LPD classifier modules

following the same design criteria, each designed to detect a specific type of faulty

access link with a predetermined baseline performance (e.g. 24 Mb/s or 12 Mb/s

DSL link, 14 Mb/s HSDPA link, 54 Mb/s 802.11g link with 1% packet loss or 5%

packet loss). This gives the operator the flexibility to easily select the most suitable

LPD classifier for the user’s access network during the diagnostic phase.

The problem presented to the LPD classifier conforms to a binary classification

problem with two outcomes, either a faulty or a healthy link. The LPD classifier

design uses a single fault classifier module with an LPD-SVM classifier (see Fig-

ure 5.3) for classifying the faulty link artefacts. During training, a trace signature

database (Θlpd) in the form of Eq. (4.1) with faulty link traces in the FAULTY class

and healthy link traces in the HEALTHY class is used. The LPD classifier goes

through the training process described in Section 4.2. The LPD-SVM finally creates

a classifier model with a hyper-surface separating the link artefacts.

The LPD classifier is capable of detecting faulty links, even if both link and
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UD faults simultaneously cause connection problems. However, this task is chal-

lenging, because artefacts created by UD faults either (i) mask those artefacts

from faulty links, or (ii) create false positives as link problems. To create a robust

LPD classifier model, the training data should contain traces collected with faulty

as well as healthy UDs for both the faulty and healthy link classes. The feature

selection algorithm then identifies the unique features that indicate a faulty link.

With cross-validation-based selection of parameters, SVM creates a complex class

boundary separating the classes. The soft margins of the classifier boundary com-

pensate for any deviations of the artefacts caused by UD behaviour, TCP type and

slight network variations.

The use of a mechanism to detect faulty links before diagnosing a UD ensures

that traces sent through the CFD classifier do not contain any faulty link artefacts.

This simplifies the design of the CFD classifier and improves classification accuracy.

Figure 5.3: LPD classifier design using a single FCM.
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5.0.4 Client fault diagnostic (CFD) classifier

The first stage of the IAND-k system ensures that the access link is not causing the

connection problem. The second stage, the client fault diagnostic (CFD) classifier,

identifies the specific types of UD faults, if any, causing the performance problem.

The major emphasis in designing the IAND-k system lies in the CFD classifier

stage, which automates the UD failure diagnosis. The design of a classifier to

separate and identify the artefacts from different UD problems is a challenge for a

number of reasons: (i) the diverse range of possible problems, (ii) the subtlety in

variations between their artefacts, (iii) variations of TCP types between devices,

(iv) multiple simultaneous problems. We propose two CFD classifier designs:

CFD-P, which uses a parallel set of FCM modules, and CFD-M, which uses a

matrix of FCM modules.

Figure 5.4: CFD-P classifier design for the IAND-k system.
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CFD-P classifier design

The CFD-P classifier design uses a parallel network of fault classifier modules

(FCMs), each trained to diagnose a single fault, to collectively perform a multi-

class classification, as shown in Figure 5.4. A device experiencing connection

problems is defined as a faulty UD and a device that is not is defined as a healthy

UD. In CFD-P design, each FCM is trained with two classes, one class being NSSs

from a specific faulty UD (faulty class) and the other being all the other NSSs,

including healthy and other known faults (other class). The modular design offers

the flexibility to continually add new diagnostic capability to the IAND-k system,

without having to reprogram or retrain the complete system.

The training samples are stored in an NSS database, Θcfd after the signature

extraction process:

Θcfd = {(xi, yi) | xiε<m, yiε{cf0, cf1, cf2, ..., cfp}}ni=1 (5.1)

where xi is the m-dimensional feature vector and yi is the class label. The class

label yi = cf0 for a healthy UD and yi = cf1, cf2, ..., cfp for p types of different UD

faults.

Each module then selects the training data sub-set (Θj
cf ) with traces labelled as

cfj for the faulty class and all the other traces cfk where k 6= j as the other class

for training the jth binary FCM, as in:

Θj
cf ={(xi, yi) | xiε<m, yiε{cfk, cfj}}ni=1, (5.2a)

yi ≡cfk ≡ −1, (5.2b)

yi ≡cfj ≡ +1 for j = 1, ..., p. (5.2c)

In CFD-P, p types of different UD faults will result in p+ 1 number of FCMs in the

system, including a FCM for the healthy UD.
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Figure 5.5: Diagnosis output of the CFD classifier.

Then, each FCM module independently processes data, improving the class

coherency, and selects the unique feature sub-set (artefacts) that separates the two

classes for the specific fault. This feature sub-set is then sent to the pattern classifier

module to model the classifier boundaries. Each FCM in the CFD-P classifier uses

L2 soft-margin SVMs for pattern classification similar to the LPD classifier design.

During the diagnosis phase, an undiagnosed trace is sent through all FCMs

simultaneously, as shown in Figure 5.5. Each of the modules first filters the relevant

feature set from the NSS. Then, each of the classifiers independently determines

if the trace contains artefacts from the particular type of fault. By using the +1

FCM outcomes, we can determine the fault artefacts embedded in the NSS and

consequently, the root cause. A +1 outcome in cf0 FCM indicates that the user’s

device does not suffer from any faults the system is designed to detect.

CFD-M classifier design

The similarities in fault artefacts can sometimes mislead the FCMs in the CFD-P

classifier, resulting in misclassification and false positives. In addition, the large

dataset involved in training CFD-P classifiers can lead to a longer training delay.

The CFD-M has been designed with a matrix of FCMs, each classifying a specific

fault class against another class, either healthy or faulty. Figure 5.6 shows the
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Figure 5.6: High-level CFD-M classifier design for the IAND-k system.

high-level design of the CFD-M classifier, and each FCM comprises the same

components as in Figure 5.4. Comparatively, CFD-M is a complex design and the

number of FCMs exponentially increases when scaling the system.

The classifier still uses the same training NSS database, Θcfd in Eq. (5.1). How-

ever, when training individual FCMs, each module selects the training data sub-set

(Θ(j,k)
cf ) with traces labelled cfj for class 1 and cfk for class 2 for training the (j, k)th

binary FCM as in:

Θ
(j,k)
cf ={(xi, yi) | xiε<m, yiε{cfj, cfk}}ni=1, (5.3a)

yi ≡cfj ≡ +1, (5.3b)

yi ≡cfk ≡ −1 for j = 1, ..., p and k = 0, 1, ..., p and j 6= k. (5.3c)

In CFD-M, p types of different UD faults will result in p(p+ 1)/2 number of FCMs

in the system.

During the diagnosis phase, an undiagnosed trace is sent through all FCMs

simultaneously. Each of the modules first filters the relevant feature set from the

NSS. Then, each of the classifiers independently determines the class of the NSS

out of the two classes the specific FCM has been trained to detect, based on the

artefacts and labels the output with cf0, cf1, cf2, ..., cfp. Recognition of the correct
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class is achieved by maximum voting, where each FCM votes for one class. If two

classes receive the same number of votes, the NSS is determined to have multiple

faults. If the majority class is cf0, the UD is determined to be healthy.

5.1 Performance evaluation

This section discusses the performance evaluation conducted for the IAND-kUD

system. The evaluation included an analysis of the performance of the IAND-

kUD system with two LPD classifiers (for two types of access links), and the CFD

classifier in both CFD-P and CFD-M configurations. The diagnostic system was

set up on test-bed 1 (TB-1) introduced in Section 3.3. The experimental set-up

emulated a full duplex wired access link with a 80 Mb/s bandwidth, 10 ms delay

with no packet losses and no packet reordering as one healthy link (L-1), and

16 Mb/s bandwidth, 20 ms delay with no packet losses and no packet reordering

as another healthy link (L-2). Faulty links were emulated by inducing packet

losses (from 1% up to 10%) and increased delays (from 15ms up to 100ms), making

Fault Description
CF0 Healthy
CF1 Disabled SACK error
CF2 Insufficient write buffer
CF3 Insufficient read buffer
CF4 Disabled D-SACK error
CF5 TCP timestamps are not working/in error
CF6 Window scaling error
CF7 Limited reordering threshold
CF8 Link-UD speed mismatch
CF9 Link-UD speed mismatch & duplex mismatch

CF10 UD firewall causing packet loss
CF11 UD firewall causing packet delay
CF12 Overloaded UD CPU
CF13 Overloaded UD memory
CF14 UD HDD i/o overloaded - faulty

Table 5.1: Key: List of faults
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Figure 5.7: Datasets created for training and testing the LPD and CFD classifiers.
This dataset was collected from TB-1, the laboratory emulated network.

a total of 10 faulty scenarios. Both the access router and the healthy UD (Linux

2.6.32) had a protocol stack optimised for the healthy link. We emulated 14 faults

in the UD as listed in Table 5.1, and the CFDs were configured to diagnose all 14

faults and the healthy UD. We also collected data for UDs simultaneously suffering

from insufficient read & write buffer (CF15) to evaluate the system’s capability

in diagnosing multiple simultaneous faults. We collected data for the eight TCP

variants listed in Table 3.2. Figure 5.7 shows the full dataset from TB-1 used for

LPD and CFD classifier training and testing. With the 10 faulty link scenarios, 2

healthy links, 8 TCP types and 15 UD conditions, the TB-1 dataset had a total of

144,000 NSS samples.

5.1.1 Diagnostic performance of LPD classifier

The training database for the LPD classifier Θlpd contained two classes, faulty

and healthy links, and a sample visual representation of the NSSs is shown in

Figure 5.8.

The feature selection technique proposed in Section 4.2.1 requires cross-validation

before selecting the best feature sub-set. We cross-validated a number of feature
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Figure 5.8: LPD classifier NSS database, Θlpd for comparison of faulty and healthy
link NSS characteristics. Here, only partial NSSs have been shown for visual
clarity.

sub-sets as discussed in detail during FCM performance evaluation reported in Sec-

tion 4.4. For example, Figure 5.9 shows the two Θlpd databases, where Figure 5.9a

has 75 chosen features, and Figure 5.9b has 25. When compared to Figure 5.8, both

of these feature-limited NSS datasets show a clearer separation between the two

classes. The feature selection technique has reduced the dimensionality of the

problem by 73% and 91% with 75 and 25 feature sub-sets, respectively.

To evaluate the detection accuracies, first we trained the two LPD classifiers

with NSSs from a mix of TCP types. One class was the faulty link, and the other

class was the healthy link. Although we had a large number of samples, we limited

the training sets to a smaller set of samples to evaluate the LPD classifier perfor-

mance in a more data-deprived scenario. All the remaining data from the TB-1
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(a) 75 sorted features selected after Student’s t-test feature
selection

(b) 25 sorted features selected after Student’s t-test feature
selection

Figure 5.9: Comparison of NSS databases after feature selection.

dataset was used for testing the classifier. This is an important consideration, since

collecting training samples is time-consuming, expensive and imposes additional

deployment overhead on the IAND-k system. Accuracies were evaluated for the

four types of SVM kernels given in Eq. (4.8).

Figures 5.10 and 5.11 show the LPD classifier accuracies over the numbers of

training data used. As the figures show, for all kernel types, classifier accuracy

improved with increasing numbers of training samples being used. However, the
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Figure 5.10: Percentage accuracy of L-1 link LPD classifier with training sample
data set size for SVM kernels.

rate of improvement diminished with more samples. The results show that when

deploying the LPD classifier with the IAND-k system, there is a trade-off between

the number of samples being used and the overall accuracy of the classifier. Over

time, as the system collects more and more data, the accuracy will continue to

increase, although a reasonable starting point can be achieved with around 100

samples per class. Table 5.2 shows the overall accuracies achieved by the LPD

classifier with 100 training samples per class and the optimum feature sub-set.

For both LPD classifiers, the Gaussian RBF kernel achieved the best performance.

L-1 TB-1
detection accuracy

Optimum
features

L-2 TB-1
detection accuracy

Optimum
features

98.57% 34 97.46% 58

Table 5.2: LPD classification accuracy and optimum feature sets for mixed TCP
datasets L-1 TB-1 and L-2 TB-2
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Figure 5.11: Percentage accuracy of L-2 link LPD classifier with training sample
data set size for SVM kernels.

The results suggest that, with careful selection of training parameters, the LPD

classifier can differentiate between a faulty link and a healthy link with up to 97%

– 98% accuracy in these scenarios.

In the next scenario, we used NSSs from only one type of TCP, TCP New

UD TCP
variant

L-1 TB-1
detection accuracy (%)

L-2 TB-1
detection accuracy (%)

TCP Reno 93.26 92.33
TCP New Reno 98.33 97.11
TCP BIC 92.02 93.48
TCP CUBIC 94.49 93.7
HSTCP 93.35 95.72
TCP Vegas 92.56 95.79
TCP Westwood 90.63 91.93

Table 5.3: LPD classification accuracy for each each UD TCP variant when trained
with TCP New Reno datasets for L-1 TB-1 and L2-TB-2
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Figure 5.12: Percentage accuracy of both LPD classifiers with training feature
sub-set.

Reno for training LPD classifiers. In most situations, it is difficult to collect all

the different variations of TCPs to train the system. However, it is important for

the classifier to have sufficient generalisation capability at the class boundary, so

that it can compensate for the subtle variations in NSSs between TCP variants.

The testing dataset included all eight TCP types, and the overall LPD classifier

accuracies can be seen in Table 5.3. Figure 5.12 shows how the two LPD classifiers

performed in this scenario with varying numbers of feature sub-sets. As the feature

set increases, the complexity of the classifier increases and generalisation capability

decreases. The figure clearly shows that detection accuracy starts to diminish as

the feature set increases after reaching the initial peak. This is due to the classifier

not being able to generalise sufficiently to compensate for NSS variations between

TCP types. However, the overall results show that, with careful selection of the

feature sub-set, the LPD classifier can successfully differentiate faulty links from

the healthy ones, even when trained with limited TCP variations. Given that the
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testing data for the healthy link class included NSSs from faulty UDs, the LPD

classifier also managed to successfully distinguish between the NSSs variations

caused by the UD faults and the link issues.

5.1.2 Diagnostic performance of CFD classifier

Both CFD classifier configurations, CFD-P and CFD-M, were evaluated using the

same two datasets collected from two different links on test-bed 1, L-1 TB-1 and

L-2 TB-2. However, for the CFD evaluation, we used only the data collected over

healthy links, as the CFD classifier only operates after the LPD classifier ensures

that the link is healthy. Both datasets contained 14 faulty cases and one healthy

UD case for training the classifier and resulted in 15 FCMs for CFD-P and 105

FCMs for CFD-M.

In the first evaluation, the FCMs were trained using NSSs with all types of TCP

variants. For every fault, we had 800 NSSs per link. We varied the number of

training samples per fault between 10 – 200 to evaluate the impact the number of

samples has on performance. CFD-P FCMs have two classes, one with a specific

fault and another with all the other scenarios. Given that we had identical sample

sizes across all the faults, each of the 15 FCMs in the CFD-P classifier had a 1 : 14

class data ratio and the total training samples ranged between 10 : 140 to 200 : 2800.

In contrast, each of the 105 FCMs in the CFD-M classifier were separated between

two UD scenarios and had a 1 : 1 class data ratio, which resulted in training

datasets between 10 : 10 to 200 : 200. The rest of the samples were used as the

validating data, and both training and testing samples were chosen at random

for four iterations of the experiment to achieve more statistically robust outcomes.

The results of the iterations were averaged to produce the final results.

Interpretation of the CFD-P classifier output was straight-forward as the vali-

dation NSSs were assigned to one of 15 classes, i.e. CF0-CF14. Fault association

from CFD-M output was interpreted using maximum voting, where each FCM
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has a single vote. The NSS is assigned to the class that receives the highest number

of votes and then mapped onto a decision matrix with axis, actual labels and

detected labels for cross-validation. Each FCM module was trained and tuned

independently to have the best possible feature sub-set and SVM kernel. The

metrics used in the performance analysis are defined as follows:

1. True-Positive Rate (TPR): Members of class X correctly classified as belonging

to class X.

2. False-Positive Rate (FPR): Members of other classes incorrectly classified as

belonging to class X.

3. True-Negative Rate (TNR): Members of other classes correctly classified as

belonging to other classes.

4. False-Negative Rate (FNR): Members of class X incorrectly classified as not

belonging to class X.

5. Accuracy: Total correct classifications achieved by the classifier.

CFD-P performance

Table 5.4 and Table 5.5 show the overall performance of the CFP-P classifier FCMs

when trained with mixed TCP NSSs for the two datasets. The FCMs created

had different optimum kernel functions and feature sub-sets to achieve the best

accuracies. Evaluating performance across 10-200 training samples per fault (150-

3000 total dataset), the FCM showed increasing accuracy with the training set, but

the rate of improvement diminished, similar to the LPD classifier. We chose 100

samples per class for further evaluation, as this provided the best balance between

accuracy and training overheads. The results for both datasets showed similar

patterns, but the L-2 data set has slightly less accuracy. This can be attributed to

the impact the low bandwidth of the link has on the NSS consistency.
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In addition, the performance evaluation included in-depth analysis of misclas-

sification, as every NSS is sent through the full CFD when diagnosing an unknown

problem. It is crucial to have a low FPR to avoid misidentification of faults. The

results show that FCMs achieved 90% – 97% TPR and 1% – 9% FPR. The diagnostic

accuracy of the FCMs, which accounts for both correct identifications and also cor-

rect omissions, also ranged between 90% – 97%, and the CFD-P classifier achieved

an overall accuracy of 96.61% for the L-1 TB-1 dataset and 95.32% accuracy for

the L-2 TB-1 dataset. The results also show that the FCMs consistently diagnosed

problems with high accuracy, apart from FCM4, which was designated to detect

the CF4 - DSACK error. As discussed earlier, DSACK error NSSs were harder to

distinguish from SACK errors and consequently showed a relatively high FPR .

Parameters Performance

Classifier Optimum
features Kernel TPR

(%)
FPR
(%)

TNR
(%)

FNR
(%)

Diagnostic
accuracy

FCM0 36 Gaussian RBF 97.54 2.46 98.22 1.78 98.17
FCM1 38 Gaussian RBF 93.28 6.72 94.00 6.00 93.95
FCM2 26 Quadratic 98.39 1.61 99.32 0.68 99.26
FCM3 34 Linear 97.88 2.12 98.52 1.48 98.48
FCM4 66 Quadratic 90.09 9.91 90.86 9.14 90.81
FCM5 42 Linear 96.17 3.83 96.82 3.18 96.77
FCM6 50 Gaussian RBF 94.24 5.76 95.18 4.82 95.12
FCM7 48 Gaussian RBF 98.65 1.35 99.27 0.73 99.23
FCM8 22 Quadratic 95.65 4.35 96.58 3.42 96.52
FCM9 46 Linear 96.35 3.65 97.12 2.88 97.07
FCM10 34 Quadratic 97.88 2.12 98.56 1.44 98.51
FCM11 30 Gaussian RBF 96.33 3.67 96.33 3.67 96.33
FCM12 74 Gaussian RBF 93.50 6.50 94.14 5.86 94.10
FCM13 58 Gaussian RBF 97.51 2.49 98.44 1.56 98.38
FCM14 42 Quadratic 95.28 4.72 96.52 3.48 96.44

Overall 96.61

Table 5.4: CFD-P classifier FCM parameters and diagnostic performance for L-1
TB-1 dataset with mixed TCP training. Each FCMx classifier detects CFx fault.
Trained with 100 samples per UD fault, 1500 total training sample set.
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Parameters Performance

Classifier Optimum
features Kernel TPR

(%)
FPR
(%)

TNR
(%)

FNR
(%)

Diagnostic
accuracy

FCM0 34 Gaussian RBF 96.41 3.59 97.09 2.91 97.04
FCM1 28 Gaussian RBF 92.49 7.51 93.21 6.79 93.16
FCM2 22 Quadratic 96.94 3.06 97.87 2.13 97.81
FCM3 34 Linear 96.09 3.91 96.73 3.27 96.69
FCM4 50 Quadratic 89.01 10.99 89.78 10.22 89.73
FCM5 34 Linear 94.84 5.16 95.49 4.51 95.44
FCM6 58 Gaussian RBF 93.27 6.73 94.21 5.79 94.15
FCM7 32 Gaussian RBF 97.74 2.26 98.36 1.64 98.32
FCM8 30 Linear 94.40 5.60 95.33 4.67 95.27
FCM9 42 Quadratic 94.47 5.53 95.24 4.76 95.19

FCM10 34 Quadratic 96.39 3.61 97.07 2.93 97.02
FCM11 50 Gaussian RBF 95.80 4.20 95.80 4.20 95.80
FCM12 90 Linear 92.56 7.44 93.20 6.80 93.16
FCM13 74 Gaussian RBF 95.93 4.07 96.86 3.14 96.80
FCM14 50 Quadratic 93.61 6.39 94.33 5.67 94.28

Overall 95.32

Table 5.5: CFD-P classifier FCM parameters and diagnostic performance for L-2
TB-1 dataset with mixed TCP training. Each FCMx classifier detects CFx fault.
Trained with 100 samples per UD fault, 1500 total training sample set.

CFD-M performance

Tables 5.6 and 5.7 show the overall performance of the CFP-M classifier when

trained with mixed TCP NSSs for the two datasets. The FCMs created had different

optimum kernel functions and feature sub-sets to achieve the best accuracies. The

analysis was not as straight-forward as in the CFD-P because the classification

results from 105 FCMs first had to be consolidated, based on the majority of votes

into class labels. Then, the detected classes were mapped to a decision matrix

to calculate the TPRs, FPRs and final accuracies for each fault. When training

CFP-M, each FCM was trained with a smaller dataset, since only two specific

faults are considered per FCM. Evaluating performance across 10-200 training

samples per fault (20-400 total dataset), the FCMs showed increasing accuracy

with the training set, but the rate of improvement diminished, similar to the LPD
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and CFD-P classifiers. We chose 100 samples per class for further evaluation, as

this provided the best balance between accuracy and training overheads.

The results in Tables 5.6 and 5.7 from the CFD-M classifier show that there is

only a slight difference in diagnostic accuracy between the CFD-M and CFD-P. For

the same dataset L-1 TB-1, CFD-M achieved 94.88% overall accuracy, while CFD-P

achieved 96.61%. Throughout the evaluation, we observed that CFD-P slightly

outperformed CFD-M for each of the faults by a small margin. However, the

CFD-M classifier still managed to achieve TPRs above 90% and FPRs below 10%,

except for the case of CF4. We also observed that the selected feature sub-set for

each FCM was noticeably smaller than that of CFD-P, given that the within-class

data is more consistent. The average feature sub-set size after feature selection for

CFD-M FCMs was 32, while the CFD-P FCMs was 44 on average.

UD
scenario

TPR
(%)

FPR
(%)

TNR
(%)

FNR
(%)

Diagnostic
accuracy

CF0 95.87 4.13 96.54 3.46 96.50
CF1 91.56 8.44 92.28 7.72 92.23
CF2 96.46 3.54 97.39 2.61 97.33
CF3 96.25 3.75 96.88 3.12 96.84
CF4 88.32 11.68 89.09 10.91 89.04
CF5 94.53 5.47 95.17 4.83 95.13
CF6 92.30 7.70 93.24 6.76 93.18
CF7 97.02 2.98 97.65 2.35 97.61
CF8 93.73 6.27 94.65 5.35 94.59
CF9 94.58 5.42 95.35 4.65 95.30

CF10 96.21 3.79 96.88 3.12 96.84
CF11 95.32 4.68 95.33 4.67 95.33
CF12 91.87 8.13 92.50 7.50 92.46
CF13 95.58 4.42 96.51 3.49 96.45
CF14 93.56 6.44 94.28 5.72 94.23

Overall 94.88

Table 5.6: CFD-M classifier diagnostic performance for L-1 TB-1 dataset with mixed
TCP training. Trained with 100 samples per UD fault, 1500 total training sample
set.
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UD
scenario

TPR
(%)

FPR
(%)

TNR
(%)

FNR
(%)

Diagnostic
accuracy

CF0 94.74 5.26 95.41 4.59 95.37
CF1 90.77 9.23 91.49 8.51 91.44
CF2 95.01 4.99 95.94 4.06 95.88
CF3 94.46 5.54 95.09 4.91 95.05
CF4 87.24 12.76 88.01 11.99 87.96
CF5 93.20 6.80 93.84 6.16 93.80
CF6 91.33 8.67 92.27 7.73 92.21
CF7 96.11 3.89 96.74 3.26 96.70
CF8 92.48 7.52 93.40 6.60 93.34
CF9 92.70 7.30 93.47 6.53 93.42
CF10 94.72 5.28 95.39 4.61 95.35
CF11 94.79 5.21 94.80 5.20 94.80
CF12 90.93 9.07 91.56 8.44 91.52
CF13 94.00 6.00 94.93 5.07 94.87
CF14 91.89 8.11 92.61 7.39 92.56

Overall 93.62

Table 5.7: CFD-M classifier diagnostic performance for L-2 TB-1 dataset with mixed
TCP training. Trained with 100 samples per UD fault, 1500 total training sample
set.

The complexity of the training process

It may appear logical that the total training time with the CFD-P design is larger

than with the CFD-M, because it is necessary to train more binary classifiers.

However, this is not true when the binary classifiers are SVMs. Indeed, the

training time of an SVM increases more than linearly with the number of training

samples. In addition, CFD-P requires a higher dimensionality model to achieve

the same performance as CFD-M due to the complex, varied class data. Therefore,

since each SVM involves a small number of training samples and is easier to solve,

it is quicker to train the 105 SVMs of the CFD-M FCMs than the 15 SVMs of the

CFD-P FCMs. Table 5.8 shows a comparison of training times for three training

dataset sizes. In both cases, we parallelised the training of SVMs using parallel

processing and multi-access, object store databases to achieve the best possible

training times. The results clearly show that, even with the larger number of FCMs,
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CFD-P CFD-M

200 training samples per fault

Total FCM dataset 3000 400
Average feature sub-set 45 35
Total training time 5min 34s 1min 05s
Support vectors 554 289
Single NSS diagnosis time 368ms 96ms

100 training samples per fault

Total FCM dataset 1500 200
Average feature sub-set 44 32
Total training time 3min 28s 55s
Support vectors 437 192
Single NSS diagnosis time 259ms 74ms

50 training samples per fault

Total FCM dataset 750 100
Average feature sub-set 42 30
Total training time 2min 56s 37s
Support vectors 357 102
Single NSS diagnosis time 206ms 52ms

Table 5.8: CFD-M classifier diagnostic performance for L-2 TB-1 dataset with mixed
TCP training. Trained with 100 samples per UD fault, 1500 total training sample
set.

CFD-M is significantly quicker to train than the CFD-P classifier.

The diagnosis complexity

Again, it may appear logical that diagnosis with the CFD-M classifier is more

complex than with the CFD-P classifier, because it is necessary to evaluate more

decision functions. However, as previously, this is not necessarily true with SVMs.

Indeed, the complexity of SVM decision-making is directly linked to the number of

support vectors (SVs), and although decision-making is more complicated in the

CFD-M’s case, it is reasonable to consider that the complexity is proportional to

the total number of support vectors. As shown in Table 5.8, the CFD-P FCMs used

more support vectors than the CFD-M and consequently, the time to diagnose

a single NSS sample was longer in the CFD-P. Given that CFD-P marginally

outperforms CFD-M on diagnostic accuracy, but CFD-M is quicker to train and

quicker to diagnose, the selection of the CFD classifier becomes a design decision

based on the specific IAND-k application. If speed of diagnosis and ability to
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L-1 TB-1 dataset L-2 TB-1 dataset
UD

scenario
CFD-P

accuracy
CFD-M

accuracy
CFD-P

accuracy
CFD-M

accuracy
CF0 96.79 94.85 95.85 92.41
CF1 92.31 90.67 91.01 89.93
CF2 97.42 96.18 96.05 94.81
CF3 97.32 95.11 94.97 94.04
CF4 89.43 87.58 88.00 86.43
CF5 94.51 93.42 93.57 91.50
CF6 92.45 92.06 92.92 90.76
CF7 96.97 95.86 96.45 94.73
CF8 95.12 93.44 93.92 91.96
CF9 95.38 93.83 92.21 90.93

CF10 96.33 95.19 95.34 93.73
CF11 95.04 92.34 94.28 92.96
CF12 91.80 91.32 90.86 89.88
CF13 96.92 95.11 95.18 93.12
CF14 94.47 91.26 92.05 91.42

Overall accuracy 94.82 93.22 93.51 91.91

Table 5.9: CFD-P and CFD-M classifiers diagnostic performance for TB-1 datasets
when trained with TCP New Reno, and validated with all eight TCP types.

quickly add more faults to the system is more important than a slight loss of

accuracy, then CFD-M provides the best option. If the accuracy of the outcome is

more important than the speed to a diagnosis or the time to re-train the system,

CFD-P offers the best option.

Training only with TCP New Reno NSSs

Lastly, both CFD-P and CFD-M classifiers were evaluated using only TCP New

Reno as the training dataset. The classifiers were then tested with NSSs with

multiple TCP variants to evaluate the classifier’s ability to generalise the class

boundaries to compensate for variations in the NSSs. Table 5.9 shows the results

achieved in this experiment. The results were consistent with previous results

achieved under similar training data constraints. The overall accuracy reduced

by a small amount compared to the previous mixed TCP training dataset, due to
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the misclassification of ambiguous NSSs. However, even with the severely limited

training dataset, the FCMs were capable of detecting UD faults with over 91%

overall accuracy, sufficient for a functional diagnostic system.

5.1.3 IAND-k system characteristics

For the root cause diagnosis of UD soft failures, the proposed IAND-k system

offers many advantages over the other inference methods currently available:

• The system offers a fully-automated, comprehensive framework which is

extendible to diagnose a diverse range of faults, in contrast to the limited

capabilities of other tools.

• The diagnostic capability of the system evolves with the diversity of the

fault signature databases, instead of the inference algorithm. Users can

collaborate to create common signature repositories, encompassing a wide

range of faults, networks, and device platforms. Most rule-based systems

lack the generality to operate effectively in a dynamic environment.

• The system relies solely on packet traces collected at end-points and can be

implemented as an application. This provides flexibility for the operator to

deploy the IAND-k system at any desired network location.

• Although the system is designed to diagnose users’ computers from the

edge of the operator’s network, the same system can be used for diagnosing

intermediate nodes in the network by deploying a trace collection module in

a neighbouring node and training with suitable data.

5.2 IAND-kCC system for private clouds

With the rapid adoption of cloud applications by ordinary, non-expert users,

“always available“ network connections and consistently fast communication
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speeds are becoming critically important. The networking research community

has converged on the common understanding that performance unpredictability

and data-transfer bottlenecks are going to be significant obstacles to satisfactory

cloud computing experience. In addition, automation is a mandatory requirement

for achieving highly scalable cloud services, which presents a significant research

challenge for the creation of comprehensive diagnostic solutions.

We propose the use of the fault signature-based inference technique to automate

the diagnosis of user device bottlenecks in a private cloud environment. The IAND-

k for cloud computing (IAND-kCC) system essentially uses a modular framework

with the FCMs proposed in the previous section to identify the faults at UDs that

affect the performance of the whole cloud network.

A private cloud is the phrase used to describe a cloud computing platform

that is implemented within a corporate firewall, under the control of the IT de-

partment (see Figure 5.13). A private cloud is designed to offer the same features

Figure 5.13: Private cloud computing environment.
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and benefits of public cloud systems, but removes a number of objections to the

cloud computing model, including control over enterprise and customer data,

worries about security, and issues connected to regulatory compliance. The private

cloud model is closer to the more traditional model of individual local access

networks (LANs) used in the past by enterprise, but with the added advantages of

virtualisation.

A key advantage the private cloud offers is a greater degree of control; as a

private cloud is only accessible by a single organisation, that organisation will

have the ability to configure and manage it, consistent with their needs, to achieve

a tailored network solution. Although private cloud networks can be realised in

many technical architectures, most of the solutions provide a close link similar

to traditional LAN services between the user devices and core servers. Most

organisational users’ devices will have constant communications with the cloud

servers and between the devices themselves and reliable, optimised connections is

critical to daily productivity. The IAND-kCC system in a private cloud computing

environment can provide organisations with quick and automated diagnosis of the

network performance issues experienced by users due to failures in their devices.

5.2.1 Deployment

The deployment of the IAND-kCC system in a private cloud is shown in Fig-

ure 5.14. The diagnostic server is located on a central server, while the trace

collection module is deployed in the core access router of the data centre. This

is typically the primary access conduit into the data centre for all users. How-

ever, depending on the architecture, trace capturing modules can be deployed

in distributed sets of edge routers. Users engage with the system when they are

experiencing a network issue, and a trace capture module is then loaded into their

device. This mechanism has been explained in detail in Section 3.2.

When the IAND-kCC system is first deployed, the system has to be trained

159



with traces collected over the specific network. The training data can also be

sourced using the LASE technique described in Section 3.6. However, since most

enterprise networks do not change rapidly, once trained, the system can diagnose

soft failures in devices without having to re-train regularly.

5.2.2 Performance evaluation

We deployed the IAND-kCC system using test-bed 2 described in Section 3.3. As

shown in Figure 3.8, the UDs and the access router were connected through the

live campus network. This set-up closely represents the private cloud scenario,

and the live network provided real-world data to conduct a thorough analysis of

performance.

This dataset to train and test the system included the same 15 UD scenarios

shown in Table 5.1 and included all 8 types of TCPs at the UD. The data set was

purely used to evaluate CFD classifier performance, with the assumption that

links performed optimally without any major failures. Minor fluctuations are

inherent in any network and the live network we used had cross traffic and normal

congestion. The total dataset (TB-2) is shown in Figure 5.15 and had a total of

24,000 NSS samples, with 200 samples per scenario.

Figure 5.14: Deployment of the IAND-kCC system in a private cloud environment.
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Figure 5.15: Datasets created for training and testing the IAND-kCC CFD classi-
fiers. These datasets were collected from the TB-2, live network test-bed.

Both CFD-P and CFD-M configurations, with 15 FCMs and 105 FCMs respec-

tively, were run to compare the overall diagnostic performance achieved per fault.

The FCMs were trained with 100 samples per fault, and NSSs with a mix of TCP

variants were used in training. The validation set included 700 samples per fault.

Table 5.10 shows the summary of the results. The patterns of accuracy varia-

tion with changing training datasets and the impact on FCM specific parameters

were similar to that of the CFD evaluation discussed previously in this chapter.

Table 5.10 shows the CFD-P classifier had an overall detection accuracy of 94.54%

and CFD-M 92.85%. Both classifiers were able to identify all the classes with

accuracies above 90%, with the exception of CF4, and achieved a TPR above 91%

and FPR below 10%.
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Given that live networks contain dynamic links resulting in a larger noise

component in NSSs, the results show that FCMs are capable of compensating

for these variations and successfully diagnosing the issues. The diagnosis has

been achieved with full automation, such that once the system is trained, no

human intervention is needed until the diagnosis is completed. Once the failure

is diagnosed, an administrator still has to fix the problem, and the system can be

re-engaged to confirm the issue has been resolved.

5.3 Conclusion

In this chapter, we have introduced and evaluated the IAND-k system, an au-

tomated failure diagnostic system that uses intelligent inference from NSSs to

automatically identify artefacts created by specific problems previously known.

The system consists of a cascading set of supervised classifiers: (i) the LPD classi-

fier, tasked with first filtering out whether the connection performance problem is

caused by link faults or otherwise, (ii) the LFD classifier that diagnoses the exact

root cause of a link failure, and (iii) the CFD classifier, tasked with diagnosing the

specific UD faults that cause the connection problem. We specially focus on the

IAND-k system’s application on UD soft failure diagnosis (IAND-kUD). The LPD

classifier uses a single FCM that incorporates NSS generation, feature selection

and an L2, soft-margin, binary SVM for pattern classification. The CFD classifier

performs a complex multi-class classification of UD faults, and we introduce two

variants: CFD-P, which uses a parallel network of FCM modules, and CFD-M,

which uses a matrix of FCM modules. The modular design of the CFD classi-

fier offers extendibility to diagnose new faults by training new FCM modules

independently.

We evaluated the system by diagnosing a number of common UD problems

with various TCP implementations. Furthermore, we analysed the system’s per-
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formance in the absence of any UD faults, as well as when the training data is

severely limited. Our results show that the LPD classifier can effectively identify

and separate the link problems, without being affected by UD behaviour and TCP

type. The CFD classifier results show that FCM modules collectively produce

high diagnostic accuracy in all tested scenarios, and CFD-P slightly outperforms

CFD-M in accuracy but takes longer to train and diagnose a new case.

Then we created the IAND-kCC, an application of the proposed IAND-k

system, to automate the diagnosis of UDs in private cloud environments. We

used data collected over a test-bed with a live network to evaluate the system’s

performance when operating in a real-world networking environment. The results

show the IAND-kCC system is capable of diagnosing all the evaluated faults with

a high degree of accuracy, while keeping false positives to a minimum.

The proposed IAND-k system provides a framework for an accurate diagnostic

system that is scalable for a large array of user devices, easy to deploy, and

extendible in diagnostic capability. To our knowledge, the IAND-k system is the

first to use automated inferencing of TCP packet traces using SVMs for diagnosing

the root causes of network performance issues.
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CHAPTER SIX

KNOWN AND UNKNOWN
SOFT-FAILURE DIAGNOSIS USING

HYBRID CLASSIFIER ARCHITECTURE
AND TRANSFORMED SIGNATURES

The ever-growing numbers of different types of connected devices and the complex

dynamic nature of most networks mean that new types of performance problems

and root causes are being created at an exponential rate. Whilst the diagnosis of a

known fault is crucial, the ability to extend the scope of diagnostic capability to

previously unknown faults with minimum human intervention adds more value

to an automated fault diagnosis system.

We have in previous chapters proposed IAND-k, an automated diagnostic

systems based on supervised ML algorithms and normalised statistical signatures

(NSSs) [221] and [248]. The ML algorithms are first trained using NSSs, which

contain the artefacts embedded by the network faults and provide the fingerprint

required for a diagnosis. However, due to the supervised nature of the system, the

diagnostic capability is bound by the number of fault classes present and labelled

in the training data set: known faults. In the case of diagnosing an unknown fault,

this often leads to a false-positive error.

In this chapter, we present IAND-h, a diagnostic system based on a hybrid clas-

sifier architecture that combines both supervised and unsupervised ML algorithms
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for the diagnosis of known and unknown faults in UDs. The IAND-h system

architecture allows the unknown faults to be further analysed using several ”clus-

tering” algorithms [249, 250] to detect the presence of new faults. Clustering is the

task of grouping sets of objects such that objects in the same group (cluster) are

more similar than those in other groups.

NSSs introduced in previous chapters contain a large feature set (460 features)

which enable them to characterise a broad range of faults with a single represen-

tation. However, as evident from Figure 6.1, not all features contribute equally

to the separability of the classes, and even features within the same class show

variations due to the inconsistent nature of the connection link. Having a large

feature set can also lead to over-fitting (“curse of dimensionality“ [241]) of the

data when training an ML-based system; this will lead to poor generalisation

and classification accuracy. Therefore, the dimensionality of the NSSs should be

reduced while preserving the important information, to build a more effective

diagnostic system.

In this chapter, we present two new signatures, called EigenNSS and Fish-

erNSS, both motivated by techniques used in facial recognition applications to

achieve dimensionality reduction in NSSs. The new signatures transform the NSSs

to lower dimensions without losing useful information. Principal component

analysis (PCA) is used to transform the NSS into a new signature called EigenNSS,

whereas Fisher’s linear discriminant (FLD) analysis [84] is used to generate an-

other signature type called FisherNSS. FisherNSS strives to maximise the ratio of

the between-class scatter to the within-class scatter for better classification results.

We report a detailed comparison of performance of EigenNSS and FisherNSS with

data gathered from real-world networks. To our knowledge, this is the first time

network soft failure signatures have been created using the proposed techniques.
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(i) Insufficient read and write buffers

Figure 6.1: Comparison of NSSs for common UD soft failures. Here, the x-axis
(columns) of each figure represent 460 features of the 70 NSSs shown on the y-axis
(rows). Each of the features has been normalised and scaled [−6, 6] and each of
the features is represented by a coloured vertical line projecting the scaled feature
value to RGB space. Although, the NSSs of the same fault show minor variations
due to stochastic nature of the networks, groupings of 70 NSSs of the same fault
clearly shows that the NSSs are consistent in uniquely characterising a fault and
can be used as the “fingerprint” for a diagnosis.
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6.1 Operational overview

Deployment

The IAND-h diagnostic server is deployed as an application on the access router,

as shown previously in Figure 1.4. The complexities that can affect the uniformity

of the captured packet traces can be eliminated by narrowing down the path to

the UD into an access link. The packet trace capturing mechanism introduced

in Chapter 3 is used to capture the sample data required for diagnosis and the

capture process is shown in Figure 6.2. Firstly, upon initiation by the end-user, the

modules needed for file transfers and packet captures are loaded. Two TCP-based

data transfers of a fixed size of 20 MB file (an upload and download) are conducted

serially between the UD and server. The captured TCP packet traces are sent to

the feature extraction module, where they are analysed and features are extracted

to obtain statistical attributes (features), known as “raw“ signatures.

Figure 6.2: Deployment of the IAND-h system over the access network.

Operation

Figure 6.3 shows the operational stages of the diagnostic system. There are three

main stages:

1. Training stage,
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Figure 6.3: Operational overview of the IAND-h system.
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2. Diagnosis stage,

3. New class recognition stage.

During the training stage, the packet traces are collected from UDs with known

faults induced. Statistical attributes of the traces collected at client and server

are then extracted and serially concatenated to form the raw signature. These raw

signatures are then given a class label to indicate the specific fault they characterise.

The raw signature is then normalised against the healthy performance baseline to

create the NSS. We define a healthy UD similarly to Chapter 1.

The NSSs generated from multiple classes of faults are stored in a database

and are used to calculate the transformation matrices of the database. The NSSs are

projected onto either one of the transformation matrices to create the transformed

signatures, EigenNSS and FisherNSS respectively. The transformed signatures

of each class are used to calculate the pattern vector (εf ) of that particular class.

Finally, two thresholds are chosen for the system:

1. λnss for determining if a particular signature is valid, and

2. λfc for determining class associations.

Once the system is trained, UDs that are suspected to be faulty can be diagnosed

by collecting packet traces and sending them through the same feature extraction

and NSS generation process. The EigenNSS and FisherNSS can then be generated

by projecting the NSSs onto either one of the transformation matrices created

during the training stage. These transformed signatures are then used to calculate

the pattern vector (ε) and Euclidean distance (σ)(ED) of the pattern vector from

each known class. The NSS can also be used to calculate the square distance (µ)

from the training NSS data set. Finally, depending on the minimum ED (σmin) and

square distance (µ), one of the three possible outcomes is decided by the system as

follows:
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if µ > λnss then

The sample is highly distorted.

Reliable diagnosis is not possible.

else

if σmin < λfc then

The sample is classified to the class associated

with the minimum distance. The sample is then

added to the training NSS database

and the εf of the class is recalculated

to include the new sample.

else

The sample contains a valid signature, but

it does not belong to any of the

known classes. Hence, the sample is

classified as an unknown class.

end if

end if

The above is called as Euclidean distance (ED) classification

When the IAND-h system detects a predetermined number of unknown sig-

natures, a new class recognition phase begins. This predetermined number is

usually defined to be twice the minimum threshold size at which a given cluster is

accepted as a new class. These unknown signatures are first stored in a separate

database with their pattern vectors. These signatures are then sent through a

cluster estimation algorithm [249] which determines (i) if the data set has samples

that can be clustered within the λfc bound, and (ii) the number of clusters that

can be created. These clusters will be matched with their exact cluster member-

ships with the assistance of a clustering algorithm, which uses a fuzzy C-means

clustering technique with iterative optimisation [250]. If any of the clusters reach

172



the minimum threshold size, they are considered as a new class and are added to

the training database. The transformed signatures of the new class are sent to the

class pattern vector calculation, while its NSSs are sent to the classifier training

database. Although new classes can be added by calculating the class pattern

vectors, the system can be re-trained in a short time when it is not performing any

diagnostics if the training database is updated with the new NSSs. Re-training

adds the new classes to supervised classifier and improves the final accuracy of

the system. The IAND-h system also prompts administrators that a new fault

class has been detected, and after investigative analysis of its actual root cause, a

class label can be created.

6.2 EigenNSS: NSS transformation using principal com-

ponents

To overcome the challenges of having high dimensionality in NSSs, we searched

for a way to emphasise the significant global features that contain a maximum

amount of information. Dimensionality reduction can be achieved by firstly

finding the principal components (i.e eigenvectors of the covariance matrix) of

the distribution of NSSs. Then, these eigenvectors can be ordered according to

the amount of variations among the NSSs. Finally, the NSSs are projected onto a

selected number (D) of eigenvectors that account for the highest variation. These

projections are called ”EigenNSS”, and represent most of the information from the

original samples in a D-dimensional space.

6.2.1 Generating EigenNSS

The following sub-section provides details of the EigenNSS generation and calcula-

tion process. Consider a training NSS set of x1, x2, ..., xp where x is am-dimensional
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feature vector. For example, the set of NSSs shown in Figure 6.1 has 70 samples

for each of the 10 classes (p = 70 x 10 = 700), in which each has 460 features (m =

460). The mean of the NSSs can be found by

Φ =
1

p

p∑
k=1

xk

The training NSSs are then mean-centred by

−
xi = xi − Φ

where
−
xi is the mean-centred m-dimensional feature vector of the ith instance. The

resultant matrix ∆ = {−x1,
−
x2, ...,

−
xp} has the dimensions of m x n and is subjected

to principal component analysis where the eigenvectors, vi and the correspond-

ing eigenvalues ni of ∆ are determined by solving a well-known singular value

decomposition (SVD) problem. However, only a pre-determined D number of

eigenvectors v, that are arranged from the highest eigenvalue n, are selected to

create the eigen matrix which has the dimensions of m x D. Finally, EigenNSSs

are created by projecting the mean centred NSS matrix, ∆, onto the eigen matrix,

ΨPCA as

ΘPCA = ΨPCA
T∆

where ΘPCA = {e1, e2, ..., ep} and e is a D-dimensional EigenNSS.

Figure 6.4 shows the comparison of EigenNSSs for various types of common

UD faults with D=30. Note that the figure shows only 25 signature samples per

class for clarity. As shown in the figure, the dimensionality of NSSs has been

reduced while preserving the most important information for class separation.

This is clearly visible, as the EigenNSS shows significant differences between

classes compared to the NSSs. However, it can be seen that the EigenNSS samples

within the same classes can vary due to the inconsistent nature of the network
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Figure 6.4: Comparison of EigenNSSs for common UD soft failures. Here, groups
of 20 signature samples (y-axis=1-20) per fault are shown to demonstrate the
consistency of EigenNSS within a fault group.176



links.

6.3 FisherNSS: NSS transformation using Fisher’s Lin-

ear Discriminant Analysis

As shown in the previous section, EigenNSS reduces the dimensionality of NSS.

However, to account for the errors in data collection and the inconsistent nature of

the networks, separation between the unwanted information is needed for a better

classification outcome. This section shows the motivation and generation process

of FisherNSS, a new transformed signature.

6.3.1 Fisher’s Linear Discriminant

The inconsistent nature of the network affects the extracted features and may lead

to poor fault detection. These inconsistencies (noise terms) are embedded inside

the data, which makes it difficult to distinguish them from the actual information.

As previously mentioned, Fisher’s linear discriminant (FLD) aims to provide linear

separability between classes in a data set, to facilitate correct fault diagnosis. This

is achieved by using PCA to reduce the dimensions of the feature space, and then

applying further reduction and linear separation with FLD.

FLD is an example of a class-specific method, that attempts to “shape“ the scatter

of feature values to facilitate reliable classification. To illustrate the benefits of

a class-specific linear projection, we constructed a set of 10 2-dimensional (n=2)

sample points. In Figure 6.5, a comparison of both PCA and FLD for a two-class

problem is shown by projecting the constructed sample points from 2−D down to

1−D respectively. Comparing the projections, PCA smears the classes together so

that they are no longer linearly separable in the projected space. Although the total

scatter of FLD is smaller than that of PCA, FLD achieves greater between-class
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scatter, and consequently, results in better classification.

6.3.2 Generating FisherNSS

The following sub-section illustrates how the FisherNSS is generated, including

the calculation process. Assuming we have a training EigenNSS set, ΘPCA of

e1, e2, ..., ep , where e is a D-dimensional transformed feature vector. For example,

the set of EigenNSS shown in Figure 6.4 has N=25 samples for each of the 10

classes (p = 25 x 10 = 250), in which each has D=30 features. The mean of the entire

EigenNSS set can be found by

ΦPCA =
1

p

p∑
k=1

ek
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Figure 6.5: A comparison of principal component analysis (PCA) and Fisher’s
linear discriminant (FLD) for a two-class problem.
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The mean of the EigenNSS for the ith class can be found by

Φi =
1

Ni

∑
ek∈Ei

ek

where Φi is the mean EigenNSS of class Ei and Ni is the number of samples in

class Ei. The between-class scatter matrix can then be computed by

SB =
c∑
i=1

(Φi − ΦPCA)(Φi − ΦPCA)T

and the within-class scatter matrix by

SW =
c∑
i=1

∑
ek∈Ei

(ek − Φi)(ek − Φi)
T

The optimal projection Wopt is chosen as the matrix with orthonormal columns (e.g.

eigenvectors, w), which maximises the ratio of the determinant of the between-

class scatter matrix to the determinant of the within-class scatter matrix, i.e.,

Wopt = arg max
|W TSBW |
|W TSWW |

.

However, only a pre-determined D number of eigenvectors that are arranged

from the highest eigenvalue are selected to create the Fisher matrix, which has the

dimensions of D x D. Finally, FisherNSSs are created by projecting the EigenNSS

matrix, ΘPCA onto the Fisher matrix, ΨFLD as

ΘFLD = ΨFLD
TΘPCA

where ΘFLD = {f1, f2, ..., fp} and f is an D-dimensional FisherNSS.

Figure 6.6 shows the FisherNSSs for various types of common UD faults with

D=30. Similarly, only 25 signature samples per class are shown for clarity. As is
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Figure 6.6: Comparison of FisherNSSs for common UD soft failures.Here, groups
of 20 signature (y-axis=1-20) samples per fault are shown to demonstrate the
consistency of FisherNSSs within a fault group.181



evident from the figure, the signature samples in each class exhibit very little vari-

ation and appear to reduce the effects of network inconsistencies on the extracted

signatures.

6.4 Training and diagnosis using transformed signa-

tures

6.4.1 Training

The following sub-section shows the IAND-h system’s training process using

EigenNSS and FisherNSS respectively, where the pattern vectors (εf ) of each

class are calculated. We assume the EigenNSS matrix, ΘPCA and the FisherNSS

matrix, ΘFLD contain n signature samples from multiple classes (faults, f ). The

D-dimensional class pattern vector, εf is calculated by averaging the reduced

signatures as

εf,PCA =
1

n

n∑
k=1

ek

εf,FLD =
1

n

n∑
k=1

fk

where these pattern vectors, εf are used during the diagnosis stage to calculate the

distance between any given unknown (test) signatures. These distances are used

to determine the best class fit of the unknown signatures.
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6.4.2 Diagnosis

Known faults

In this sub-section, the classification criteria required for the diagnosis of known

faults are shown. The simplest method for determining the class association of a

test sample is to calculate the ED, σ, between e and f respectively with each of the

class pattern vectors as

σf,PCA = ||e− εf,PCA||2

σf,FLD = ||f− εf,FLD||2

The test sample is classified and associated with a class, f , when its respective min-

imum ED, σmin, is below the chosen fault class threshold, λfc. Whilst in previous

sections we have used more advance classification methods such as SVMs, here

we have chosen to use a simpler form of a classifier to highlight the benefits of

the new transformed signatures. However, any type of ML-based classification

algorithm could be used to further enhance the performance.

Due to errors in data collection and the inconsistent nature of networks, some

of the collected packet traces can be distorted. This may lead to a false detection,

where the erroneous NSSs generated from these distorted packet traces are wrongly

classified. Hence, we introduce another term for a more reliable outcome which is

the squared distance, µ, between the NSS feature vector of the test sample, y, and

the mean of the training NSSs, Φ.

µ = ||y − Φ||2

The test sample is considered valid only if the minimum squared distance is less

than the chosen NSS threshold, λnss.

Depending on the minimum values of σf and µ, the outcome of the diagnosis

process is determined following the criteria previously described in Figure 6.3.
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Unknown faults

Here, we present the new class recognition process for the diagnosis of unknown

faults. A test signature sample is classified as “unknown“ if it contains a valid

signature but does not belong to any of the known classes. These unknown

samples are sent through a cluster estimation algorithm to determine the number

of clusters that can be created, and whether or not the samples can be clustered

within the λfc bound.

Assume that we have a set of n unknown signature samples {x1, x2, ..., xn} in

the database. We consider each of the unknown samples as a potential cluster

centre and its respective measured potential, Pi, as a function of its distances to

all the other unknown samples. The measure of potential for the ith unknown

samples is given as

Pi =
n∑
j=1

e−α||xi−xj ||
2

where

α =
4

r2a

and ra is a positive constant, corresponding to the radius defining a neighbour-

hood, where unknown samples outside this radius have limited influence on

the potential. After the potential of every unknown sample has been computed,

we choose the unknown sample with the highest measured potential as the first

cluster centre.

Let x∗1 be the location of the first cluster centre and P ∗1 be its measured potential

value. The potential of each unknown sample xi is then revised by subtracting an

amount of potential as a function of its distance from the first cluster centre. The

revised potential of the ith unknown sample can be calculated as

Pi = Pi − P ∗1 e−β||xi−x
∗
1||

2
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where

β =
4

r2b

and rb is a positive constant, corresponding to the radius defining the neighbour-

hood that will have measurable reductions in potential. The constant rb is set to

be somewhat greater than ra, to avoid cluster centres being too closely spaced

together. A good choice of values is rb = 1.5ra. The unknown samples near the

first cluster centre will have greatly reduced potential, and are unlikely to be the

source of the next cluster centre. Therefore, the unknown sample with the highest

remaining potential is selected to be the second cluster centre.

In general, the process of acquiring new cluster centres, x∗k is repeated using

the general formula for revising potentials as

Pi = Pi − P ∗k e−||xi−x
∗
k||

2

following these criteria:

if P ∗k >
−
ε P ∗1 then

Accept x∗k as a cluster centre and continue.

else if P ∗k < εP ∗1 then

Reject x∗k and end process.

else

Let dmin = shortest distances between x∗k and

all previously found cluster centres.

if dmin

ra
+

P ∗
k

P ∗
1
≥ 1 then

Accept x∗k as a cluster centre and continue.

else

Reject x∗k and set the potential at x∗k to 0.

Select the unknown sample with the

next highest potential as the new x∗k

185



and re-test.

end if

end if

Here
−
ε represents the threshold for the potential above which we will definitely

accept the unknown samples as cluster centres, whereas ε represents a threshold

below which we will definitely reject the unknown samples.

Once the cluster data are obtained, they are sent to a clustering algorithm to

determine the exact cluster membership. This algorithm uses fuzzy C-means

clustering with iterative optimisation that minimises the cost function

J =
n∑
k=1

c∑
i=1

µmik||xk − vi||
2

where n is the number of unknown test samples, c is the number of clusters

(obtained from cluster estimation), xk is the kth unknown sample, ci is the ith

cluster centre, µik is the degree of membership of the kth sample in the ith cluster,

and m is a constant greater than 1 (typically m = 2). The degree of membership,

µik, is defined by

µik =
1

c∑
j=1

( ||xk−vi||||xk−vj ||
)
2/(m−1)

FCM will converge to a solution for vi that is either a local minimum or a saddle

point of the cost function, J . The performance of the FCM solution depends

strongly on the choice of the initial values used (e.g. the number of clusters, c,

and the initial cluster centres, vi), which are taken from the cluster estimation

algorithm. Finally, the exact cluster membership can be computed by using the

final iteration value of vi.
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6.5 Performance analysis

In this section, we evaluate the performance of the IAND-h system and analyse its

diagnostic capability.

6.5.1 Data set

The test-beds introduced in Section 3.3 were used to collect data for evaluating the

performance of new signatures and the IAND-h system. The proposed solution

was deployed on test-bed 2 (see Figure 3.8), which used the live university network

with emulated UD faults (TB-2 dataset). Data collection was over a 3 weeks to

capture more realistic data with fluctuations typically experienced with network

utilisation. A total of 16 common UD faults that can affect network performance

were emulated, as listed in Table 6.1. By including the ”Healthy” UD case, a total

of 17 classes were formed and used in this evaluation. Over the entire evaluation

period, we collected 38055 traces from UDs emulating these 17 fault cases, each

having equal numbers of samples. Data was also collected from UDs operating

with eight different types of TCP, as they contribute to a variation in connection

behaviour.

6.5.2 System performance

The IAND-h system was initially trained using only 13 classes as our evaluation

needed to consider unknown faults. The faults CF2, CF8, CF10, and CF17 were

kept as the unknown faults (refer to Table 6.1), and were introduced at random

intervals into the system during the testing stage. The data sets of the 13 classes

were randomly divided into training and testing groups. We conducted the

experiment over 8 iterative sessions and averaged the results in order to achieve

statistical robustness.

The cluster threshold to add an unknown fault as a known fault was set to be
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Fault Description
CF1 Healthy
CF2 Disabled SACK error
CF3 Insufficient write buffer
CF4 Insufficient read buffer
CF5 Simultaneously insufficient read & write buffer
CF6 TCP timestamps are not working/in error
CF7 Window scaling error
CF8 Limited reordering threshold
CF9 Link-UD speed mismatch level 1

CF10 Link-UD speed mismatch level 1 & duplex mismatch
CF11 Link-UD speed mismatch level 2
CF12 Link-UD speed mismatch level 2 & duplex mismatch
CF13 UD firewall causing packet loss
CF14 UD firewall causing packet delay
CF15 Overloaded UD CPU
CF16 Overloaded UD memory
CF17 UD HDD i/o overloaded - faulty

Table 6.1: Key: List of faults

equal to the number of per-class training samples used to initiate the system (e.g.

if the system was initially trained with 50 samples per class, an unknown class

was added as a known fault when its cluster membership reached 50). This cluster

membership minimum threshold is a design choice and will dictate the confidence

level in detecting the existence of a new fault. Having a large cluster membership

before categorising a new fault improves the reliability of the system, but increases

the time taken to offer users a valid diagnosis.

The proposed IAND-h system with FisherNSS and ED classifier (FisherNSS-

ED) and the IAND-h system with EigenNSS and ED classifier (EigenNSS-ED) were

tested against the IAND-h system with original NSS and ED classifier (NSS-ED)

and a naive Bayes [144] multi-class classifier that used the original NSS data set

(NSS-NB). Both FisherNSS-ED and EigenNSS-ED used dimensionality (D = 60).

NSS-ED classifier is being used to compare the accuracy of IAND-h system against

IAND-k which primarily uses NSS.

The system was trained with all 17 classes at the beginning using similar
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training and testing sets of data. Figure 6.7 compares the overall system accuracy

between the 4 systems, where the x-axis represents the number of training samples

used. For any given number of training samples, the figure shows that both

EigenNSS-ED and FisherNSS-ED systems perform much better than the NSS-ED

and NSS-NB systems. This is due to the “over-fitting“ of classifiers used in the 460

feature NSSs, leading to degraded performance.

Figure 6.8 shows the overall accuracy of the FisherNSS-ED and EigenNSS-

ED systems in recognising the testing samples which were previously unseen.

Figure 6.9 shows the overall confusion rate of the systems, which indicates the ratio

of wrongly classified samples to the total samples. For both figures, n represents

the number of samples used for each class during training, and the x-axis shows the

dimensionality (D) of the EigenNSS and FisherNSS respectively. From Figures 6.8

and 6.9, we see that the IAND-h system using FisherNSS achieved a higher overall
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Figure 6.7: Comparison of overall accuracies of the IAND-h systems.
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accuracy than the EigenNSS for anyD transformed signature features and n-values.

Any additional features used to construct the transformed signature add only a

marginal performance gain. Noting that the original NSS contained 460 features,

these results show a successful dimensionality reduction of 96.74%. Figure 6.8

shows that as the number of samples used for training increases, the IAND-h

system performance improves to a saturation limit.

The overall accuracy gap between both FisherNSS-ED and EigenNSS-ED sys-

tems becomes closer as the number of training samples increases. Most importantly,

the FisherNSS-ED system performs better than the EigenNSS-ED system when

lower numbers of training samples are used. An overall accuracy of 80% and 20%

confusion rate was achieved using EigenNSS with n=25 samples per class and

D=15 reduced features for the 17 class system. Using the same n and D parameters

with FisherNSS, an overall accuracy of 95% with 5% confusion rate was achieved.

FisherNSS-ED is therefore deemed to be the better diagnostic system, due to the

fact that it requires fewer training samples to obtain higher overall accuracy.

Table 6.2 summarises the performance of the 17 classes used in IAND-h system.

The metrics used in the table have been previously defined in Section 5.1.2.

Table 6.2 also shows that all different types of faults can be uniquely identified

independently with a high level of accuracy, as suggested by the high TPR and

TNR. For example, faults CF6, CF7, CF12, CF13, CF14 and CF15 using both

EigenNSS and FisherNSS have high TPRs of about 90% and above. Most of the

faults show a low FPR and FNR, which indicates that the classifier has a low false

detection rate.

Faults that were kept unknown to the systems, such as CF2, CF8, CF10 and

CF17 have only a slightly smaller TPR compared to other faults. This shows that

the systems have a high detection accuracy for unknown faults.

When EigenNSSs are used, some of the faults, such as CF1, CF2, CF3, CF5,

CF8, CF9 and CF11 have relatively low TPRs which makes them less likely to

191



be correctly classified as belonging to its respective class. However, in some

fault cases, such as CF6, CF7, CF13 and CF15, EigenNSS has a better TPR than

FisherNSS.
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Figures 6.10 and 6.11 show the confusion matrix of the EigenNSS-ED and

FisherNSS-ED systems respectively. A confusion matrix is a typical form of visual-

isation to observe the performance of an algorithm, in this case, the multi-class

classifiers. The rows represent target or expected (actual) classes and the columns

represent the predicted classes. The diagonal elements of the matrix represent

the correct classifications, whereas the other indices represent the incorrect in-

stances. The ratio of each instance is colour-coded for clarity. In Figure 6.11,

the FisherNSS-ED system successfully avoids large misclassification, satisfying a

primary requirement of diagnostic system. However, Figure 6.10 shows a poorer

performance for the EigenNSS-based system due to the greater chance of misclas-

sification between classes.

Another important performance criterion for a system with an iterative training

process is the time taken to train the system and evaluate a new sample (diagnosis).

We included this in the experiment to compare how both the total training time
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Figure 6.10: Confusion matrix for the 17 classes in EigenNSS-ED system.
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Figure 6.11: Confusion matrix for the 17 classes in FisherNSS-ED diagnostic
system.

and a single diagnosis time vary with training samples per class for the previously-

mentioned classifiers. The NSS-NB classifier requires a much longer training

time than the other classifiers, as shown in Figure 6.12. The training time for the

EigenNSS-ED classifier (24 ms-435 ms) is faster than the FisherNSS-ED classifier

(33 ms-365 ms) when n = 10− 200. Since both the training times are in the order

of milliseconds, this suggests that iterative training does not affect the practical

usability of either the EigenNSS-ED or the FisherNSS-ED systems. The diagnosis

time for a FisherNSS sample is in the order of microseconds ( 4 µs–59 µs), which is

significantly faster than that of the other types of signatures, despite the fact that

FisherNSS calculation involves more steps. This is followed by the EigenNSS-ED

system, which has a diagnosis time of about 4 µs–66 µs. This shows that both

systems are not limited to on-demand diagnosis, but could also be considered for

”real-time” diagnosis applications. Real-time applications are often required to

provide guaranteed responses within strict time constraints, usually in the order
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Figure 6.12: Training and single sample diagnosis time variations against increas-
ing training dataset size for classifiers.

of milliseconds and sometimes even microseconds.

6.6 Conclusions

We have proposed and evaluated an automated UD soft-failure diagnostic system,

IAND-h based on a single hybrid multi-class classifier design. The IAND-h system

is capable of diagnosing known and unknown faults by combining both super-

vised and unsupervised ML techniques. We presented the EigenNSS, a signature

derived from NSS with limited set of useful features for a unique identification.

We have also presented another signature transformation technique to reduce the

dimensionality of NSSs and to remove network inconsistencies (unwanted infor-

mation) even further from EigenNSS. This new transformed signature, FisherNSS,

aims to maximise the ratio of the between-class scatter matrix to the within-class
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scatter matrix to improve the classification process.

The IAND-h system was evaluated by diagnosing 17 UD faults collected over

a live campus network and when using NSSs, IAND-h resulted in much lower

accuracy compared to IAND-k system. However, IAND-h system achieved an

overall accuracy of up to 95% using FisherNSS. With FisherNSS, faults such as CF4,

CF6, CF7, CF8, CF9, CF10, CF11, CF12, CF13, CF14, and CF17 have a high True

Positive Rate of about 95% and above. We achieved a dimensionality reduction

of 96.74% and low confusion rate between classes. Although the IAND-h system

classifiers with EigenNSS have the shortest training time of about 24 ms–435 ms,

the FisherNSS classifiers are only marginally slower at about 33 ms-365 ms. Most

importantly, FisherNSS samples have the shortest diagnosis time, in the order of

microseconds of about 4µs–66µs, compared to all the other types of samples.

This work provides the foundation to extend the IAND ecosystem to a more so-

phisticated network environment with thousands of users, diverse client platforms

and complex traffic patterns.
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CHAPTER SEVEN

CONCLUSIONS AND FUTURE WORK

Users of modern communication networks demand high-speed delivery of in-

formation, have low tolerance for service interruptions or slow connections, and

expect rapid resolution of any problems encountered. It is becoming infeasible

to use traditional, manual methods for the timely identification and resolution of

such problems. Automated, intelligent systems are needed for rapid diagnosis of

the root causes, especially on UDs, to offer network customers the best quality of

experience.

The research reported here aimed to create the necessary scientific base for the

automatic diagnosis of network performance issues using intelligent inference

methods and machine learning techniques. This thesis has introduced a novel

approach to characterising network faults, diagnosing soft failures in network

user devices and identifying faulty links, and has proposed a number of fully

automated diagnostic systems with in-depth performance evaluations.

This chapter discusses the key contributions and insights of this research and

presents avenues for future research.

The major achievements of the research are summarised below.

• The publication of 3 peer-reviewed journal papers (one additional journal

publication is not included in the scope of the thesis), and 4 peer-reviewed

conference papers.
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• The proposal of the concept of Normalised Statistical Signature (NSS), a

minimally invasive, robust method to remotely collect and characterise

network faults using TCP trace statistics.

• The creation of a link-adaptive signature estimation (LASE) technique to

dynamically generate signatures and avoid complexities that arise in rapidly

changing network environments.

• The proposal of intelligent automated network diagnostic (IAND) ecosystem

for automated diagnosis of network problems.

• The creation of fault classifier modules (FCMs) using support vector machine

(SVM)-based pattern classification for identifying individual network faults.

• The proposal and evaluation of the IAND-k, a modular and scalable diagnos-

tic system for automatic detection of previously known user device problems

(IAND-kUD).

• The creation and evaluation of the IAND-k for cloud computing (IAND-

kCC) system for diagnosing user device bottlenecks in cloud environments.

• The proposal of EigenNSS and FisherNSS, two forms of signatures derived

from the original NSS for complexity reduction and improved separability.

• The proposal and evaluation of IAND-h, a single hybrid classifier architecture

with the capability of diagnosing both known and unknown faults with real-

time detection capability.

• The creation of one of the largest, accurately labelled active TCP trace datasets

in the research field with 1.2 million samples.

200



7.1 Conclusions and Major contributions

Characterisation of network failures

Due to its position in the middle of the protocol stack, the TCP layer is

directly affected by the behavioural characteristics of network elements.

Performance bottlenecks or faults in user devices (UDs) alter the typical TCP

packet stream and embed unique anomalies in the packet traces, which are

called “fault artefacts“. These artefacts are the key to diagnosing the root

causes of network failures.

The first step in identification is effective and quantitative characterisation of

the artefacts. We propose a methodology based on active TCP trace capturing

and subsequent extraction of an aggregated statistical feature set to convert

the TCP packet trace into a signature. The process transforms the fault

artefacts embedded in the packet trace into a unique feature pattern on the

signature, resulting in a unique signature for each type of fault. First, raw

packet traces of a bi-directional TCP connection between the access server

and the UD are captured at the sender device. The connection is user-initiated

and performs file transfers of a constant size. We have determined that

generally a 20 MB file size offers the best balance between performance and

accuracy. The captured traces are then processed to extract per-connection

aggregated statistics using a tcptrace-based [193] signature extraction module

we have created. The aggregated statistical attributes we extracted provide

a robust feature set that is representative of the UD condition, generalises

TCP variant-specific connection behaviour, and is captured easily without

the requirement to log into the user’s device.

Fault signatures

Using the feature set extracted, we propose a normalised statistical signature

(NSS), to uniquely characterise UD conditions causing network performance
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issues. Using the NSS, we have demonstrated that each fault has a unique

feature pattern that distinguishes them from one another and a healthy UD.

Also, with 460 features, the NSSs can represent a wide range of faults within

a single representation, unlike many other proposed techniques reported in

research the literature.

The normalisation process also introduces a standardised baseline to ef-

fectively compare the signatures. We have presented the consistency of

NSSs within a single type of fault through a unique visual representation in

Figure 3.2. We also evaluated various features in the NSS under dynamic net-

work conditions to identify different types of features in terms of consistency

and robustness. We have identified stable-significant features, stable-null fea-

tures, and unstable features, which need to be taken into consideration when

using NSSs in highly dynamic networks or across multiple networks. The

NSSs created here provide the foundation required to automate diagnosis.

Link-adaptive signature estimation

The properties of the link connecting the UD and the access router have

a significant impact on the NSSs. To generalise the diagnostic capability

under various link conditions (i.e. delays, bandwidths, packet losses, etc.),

we require an extremely large number of training samples collected with all

possible link parameter combinations.

To avoid the need for a large data set, we propose the concept of link-adaptive

signature estimation (LASE). LASE uses a smaller data set, collected with

different link parameters, to train feature estimator functions to identify

the complex relationship between the features and link parameters. Once

trained, the feature estimators can predict the feature values and thus the

fault signatures over any link within the training parameter range.

We have demonstrated the effectiveness of LASE across a bandwidth range
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of 100 kB/s – 15 MB/s and a path latency range of 0 ms – 100 ms. We have

created feature estimators using neural networks, support vector regres-

sion, polynomial models, and radial Bayes functions. A comprehensive

comparison of the techniques has shown that neural networks and support

vector regression offer the best performance and flexibility. We also identi-

fied four further types of features: predictable and unpredictable (chaotic),

path-dependent and path-independent. The feature categorisation provides

an input to the feature selection process to remove unnecessary features from

the NSS. The proposed LASE technique can be extended to include more link

parameters following the same methodology when links experience more

complex dynamics.

Fault inference from signatures

Using SVM as the pattern classification algorithm, we introduce a “fault clas-

sifier module “ (FCM), which implements the inference method for artefact

identification (see Figure 4.1). Each FCM is designed to detect artefacts from

a single type of fault using soft-margin non-linear binary SVM classifiers.

The FCM operates in two phases: first, the training phase creates an appro-

priate classifier model using trace data samples collected from known faults.

The training phase includes signature extraction, data pre-processing and

feature selection before SVM training, all vital components for achieving

the best classification accuracy. Second, in the diagnostic phase, the trained

classifier model is used to determine the artefacts hidden in an undiagnosed

trace. We evaluated the FCM’s detection capability using NSSs collected in

our laboratory network and from live networks. We have used 16 specific

types of UD faults to demonstrate that FCMs are capable of detecting specific

issues with a high degree of accuracy, ranging from 90% – 99% in the labora-

tory network and 88% – 96% in the live network. These FCMs provide the
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basic building blocks necessary to build more complex and comprehensive

diagnostic solutions. Most diagnostic systems in the research literature are

purpose-built to diagnose a specific set of faults and require re-design of the

algorithms to diagnose new faults. In contrast, systems built with FCMs

can be extended by simply replicating an inference module and training

with new fault data instead of changing the core inference algorithms in

the entire system. Furthermore, the modules can be re-trained and tuned

independently. FCMs offer a scalable approach to building a diagnostic

system, where the system’s diagnostic capability improves as the diversity

of fault data increases.

Feature selection

Since not all the features contribute equally to the characterisation of a partic-

ular fault, the NSS feature set can be reduced to select only the best features

for a specific classification task. The reduction of the feature set reduces the

complexity and improves the generalisation capability of the classifier. We

propose a two-step, hybrid feature selection technique based on the Student’s

t-test filter and an iterative wrapper to select the best possible feature set for

the particular FCM. The performance evaluation of FCMs demonstrated that

the selection of the correct feature set is critical to the success of each FCM.

The FCM-based module architecture allows the selection of the best feature

set for a specific binary classifier sub-problem, which improves the overall

effectiveness of systems built using FCMs.

Automated failure diagnostic systems

We propose the IAND ecosystem, an automated network fault diagnostic

system that has two systems: IAND-k and IAND-h.

IAND-k is modular system based on supervised machine learning using

FCM as the foundation component to perform complex diagnosis tasks for
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detecting previously known problem . The system consists of a cascading

set of classifiers: (i) the LPD classifier, tasked with first filtering out whether

the connection performance problem is caused by link faults or otherwise,

(ii) the LFD classifier that diagnoses the exact root cause of a link failure, and

(iii) the CFD classifier, tasked with diagnosing the specific UD faults that

cause the connection problem. We specifically focus on the UD diagnosis

(IAND-kUD) and have left link problem diagnosis for future work.

The evaluation of the system with test-bed data has demonstrated the high

true-positive and low false-positive rates of the system, achieving a high

degree of overall accuracy. We demonstrated that the IAND-k system can

consistently diagnose multitudes of issues, even when trained with severely

limited datasets. We also propose two design choices for the CFD classifier

and discuss the trade-off between accuracy and training/diagnosing time

overheads between the CFD-P and CFD-M designs.

We also applied the IAND-k system to automate the diagnosis of UDs in

private cloud environments (IAND-kCC). We have demonstrated the IAND-

kCC system’s capability to diagnose UD failures in a real-world dynamic

network with a high degree of accuracy while keeping false positives to a

minimum.

Transformed signatures for complexity reduction

To overcome the challenges of having high dimensionality in NSSs, we

propose methods to emphasise significant global features that contain a

maximum amount of information. We propose a transformed signature,

EigenNSS by (i) firstly, finding the principal components (i.e eigenvectors

of the covariance matrix) of the distribution of NSSs, (ii) then, ordering

the eigenvectors according to the level of variations among the NSSs, and

(iii) finally, projecting the NSSs onto a selected number of eigenvectors that
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account for the highest variation. EigenNSS aims to reduce the dimension-

ality of NSS. However, to account for the errors in data collection and the

inconsistent nature of the networks, separation between this unwanted infor-

mation is required for a better classification outcome. We propose FisherNSS,

which uses Fisher’s linear discriminant (FLD) to provide linear separabil-

ity between classes by (i) first, using principal component analysis (PCA)

to reduce the dimensions of the feature space, and (ii) then, applying fur-

ther reduction and linear separation with FLD.Consequently, the FisherNSS

provides a better class separation then EigenNSS. Experimental evaluation

showed both EigenNSS and FisherNSS provided better overall accuracies

compared to NSS when used in a diagnostic system. FisherNSS outperforms

EigenNSS in terms of accuracy, but EigenNSS has a comparatively shorter

training time.

IAND-h, a hybrid diagnostic system for known and unknown soft-failure diagnosis

The IAND-k diagnostic system is limited to diagnosing known types of

faults due to the supervised nature of the learning task. We propose IAND-h,

a hybrid classifier architecture that combines both supervised and unsuper-

vised ML algorithms for the diagnosis of known and unknown faults in

UDs, as a step to compensate for the aforementioned limitations. This new

architecture allows the unknown faults to be further analysed using several

”clustering” algorithms. The system uses a single multi-class classifier with

Euclidean distance-based classification. The evaluation of the system has

demonstrated a high level of detection accuracy, and faster training and

diagnosis time, the latter feature making it suitable for on-demand as well as

real time diagnostic applications.

Network failure datasets
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As we do not have access to operator networks, the sample data required

for training and testing the diagnostic systems were collected in network

test-beds deployed in the university. The creation of accurate fault signatures

and the collection of sufficient sample numbers proved to be one of the

most challenging parts of the research. We used a combination of fault

injection into devices, network emulation and live networks to collect a

number of labelled active TCP trace datasets. The data included 17 different

UD scenarios, including healthy UDs and faults, 8 different TCP variants at

UDs and 3 different test-beds. Link emulation was used to precisely control

link conditions in the laboratory test-bed, and live networks with increasing

complexity were used in the other two test-beds to collect more realistic data

with cross-traffic, congestion and variations. To our knowledge, no such

dataset exists of UD failures and this is a key contribution to the networking

and ML research community.

7.2 Future work

The results of the current work have clearly demonstrated the potential value of

NSSs, fault inference using FCMs, and the potential of automated, end-to-end

fault diagnostic systems. The work presented in this thesis opens a number of

avenues for future research to explore.

Link fault diagnosis

The fault inference methodology and diagnostic systems proposed in this

thesis focused on soft failure diagnosis in UDs. However, a comprehensive

diagnostic system would benefit from the capability to diagnose root causes

of link problems in conjunction with UD failures. Link failures add an

additional level of complexity, as the links undergo complex dynamics and

may be variable in nature. Furthermore, complex multi-hop paths, especially
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with low bandwidth last-mile connections, add complexity to the creation

of robust models, as the relationships between the link-path properties and

observed effects may be complex in nature. However, having the ability to

diagnose the exact causes of link problems using LFD classifier, especially in

an automated scalable system, could add more value in the future.

Evaluation with complex networks

1. Wireless networks are a key part of our lives, and most devices today

connect to access routers through wireless access points. The application

of NSSs and diagnostic systems in wireless networking environment

can provide valuable insights into how complex link characteristics

affect the NSSs and overall classifier performance. From our initial

evaluations, the proposed methodologies could be directly applied with

additional constraints on the environment variations. However, further

evaluations are required to identify potential issues.

2. The current analysis of the systems proposed can be expanded into

further complex networking environments to evaluate the performance,

identify the limitations and propose improvements. As mobile devices

are becoming increasingly prominent, the proposed IAND ecosystem

can be applied to a mobile-specific set of common problems.

3. Real-world ISP networks with multi-hop connections between the UD

and the access routers are common, but complex network architectures.

Application of the proposed NSSs and inference mechanism in such

networks with real complex data could provide the insights required to

improve the NSSs and capabilities of the pattern classifiers.

4. Public cloud infrastructure is another complex networking environment

that could benefit from the IAND ecosystem. However, further evalua-
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tions are required to improve the system’s dynamic adaptability to cater

for the range of devices that utilise a public cloud service. The proposed

systems can also be extended to offer dynamic device tuning to improve

the user experience based on the current prevailing networking condi-

tions, especially with real-time traffic such as video and chat. In this

scenario, the classifiers can be changed into regressions, and dynamic

device tuning can be achieved by training with sufficient data.

Improving the NSS

The proposed NSS can be expanded to include derived, higher-order param-

eter features. With increasing complexity of the networking environments,

such features will become important, especially to provide more stability

to the features. In particular, bandwidth normalised features, packet loss

normalised features and specific ratios that remain unchanged with changing

network conditions can be added to the NSS to improve the characterisation

capabilities. Furthermore, application-specific traffic such as VoIP and P2P

could supplement NSSs for specific applications. The traces from TCP can

be supplemented with other common protocols such as RTP, IP and HTTP to

capture a wider range of issues. Changing the artificially generated traffic

pattern to include variations and injecting scenario-specific traffic into the

signature can also improve the effectiveness of the NSS. These avenues can

be explored to improve the NSSs applicability across more dynamic and

diverse scenarios.

Dissemination of signature data to the research community

Over a two-year period, we have collected over 1.2 million trace samples

and associated NSSs with accurate labels. We currently have over 5 TB

of data in secure storage. As no such dataset is available in the research

literature, making the dataset available to the research community, both in
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networking and in machine learning can open up numerous opportunities.

We are creating a platform, the Monash University network signature storage

and analysis platform (N2SAP) to store the data for easy public access, with

search functionality to select the required dataset and also with the future

capability to run custom machine learning algorithms. We believe this data

set will provide the research community with a baseline to develop an

increasingly capable network soft failure diagnostic systems.

Deep machine learning for improved performance in complex networks

With additional complexities arising with complex networking environ-

ments and more complex NSSs, machine learning techniques will also need

to evolve. Especially with the non-linearities in the real-world scenarios,

deep learning provides a unique avenue of research to further expand the

inference techniques introduced here. Deep learning is a set of algorithms

in machine learning that attempts to model high-level abstractions in data

by using model architectures composed of multiple non-linear transforma-

tions. Deep learning will allow (i) effective use of the knowledge extracted

from unlabelled data, (ii) lessen the chance to converge to a local minima

(iii) improved training performance.

Automated diagnostic pathways and resolutions

As we create complex diagnostic systems, the ability to automatically select

the system in use or a specific diagnostic pathway through the ecosystem

based on the diagnosis scenario and complexity presents an interesting

research challenge. This will allow users to deploy IAND as a single, inte-

grated solution without having to select specific components and the system

itself will be capable of determining the best method to diagnose a problem.

Furthermore, the IAND ecosystem presented in this thesis focuses only on

identification of the issue, but not on the resolution. Extending the capa-
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bility to dynamically detect, identify and also resolve the network problem

would offer a more comprehensive diagnostic solution. These capabilities

will greatly enhance the automation and reduce the human intervention

required.

211



212



APPENDIX ONE

EXTRACTED TCP FEATURES

The following table shows an exhaustive list of features extracted from each trace

captured at the client and the server.

Feature Description

total connection packets

S↔C

Total packets in this connection

total packets S→C
Packets sent in each direction

total packets S←C

ack pkts sent S→C
How many of the packets contained a valid ACK

ack pkts sent S←C

pure acks sent S→C The total number of ack packets seen that were not

piggy-backed with data (just the TCP header and

no TCP data payload) and did not have any of the

SYN/FIN/RST flags set.

pure acks sent S←C

sack pkts sent S→C The total number of ack packets seen carrying TCP

SACK blocks.sack pkts sent S←C

max sack blks/ack S→C The maximum number of sack blocks seen in any sack

packet.max sack blks/ack S←C

unique bytes sent S→C How many data bytes were sent (not counting retrans-

missions)unique bytes sent S←C
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actual data pkts S→C
How many packets contained any amount of data

actual data pkts S←C

actual data bytes S→C
How many data bytes (including retransmissions)

actual data bytes S←C

rexmt data pkts S→C
How many data packets were retransmissions

rexmt data pkts S←C

rexmt data bytes S→C
How many bytes were retransmissions

rexmt data bytes S→C

zwnd probe pkts S←C The count of all the window probe packets seen. (Win-

dow probe packets are typically sent by a sender when

the receiver last advertised a zero receive window, to

see if the window has opened up now).

zwnd probe pkts S→C

zwnd probe bytes S←C The total bytes of data sent in the window probe pack-

ets.zwnd probe bytes S→C

outoforder pkts S←C How many packets were out of order (or didn’t see the

first transmit!)outoforder pkts S→C

pushed data pkts S←C The count of all the packets seen with the PUSH bit set

in the TCP header.pushed data pkts S→C

SYN/FIN pkts sent S←C
How many SYNs and FINs were sent in each direction

SYN/FIN pkts sent S→C

req 1323 ws/ts S←C If the endpoint requested Window Scaling/Time Stamp

options as specified in RFC 1323.req 1323 ws/ts S→C

adv wind scale S←C
The window scaling factor used.

adv wind scale S→C

urgent data pkts S←C The total number of packets with the URG bit turned

on in the TCP header.urgent data pkts S→C

urgent data bytes S←C The total bytes of urgent data sent. This field is cal-

culated by summing the urgent pointer offset values

found in packets having the URG bit set in the TCP

header.
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urgent data bytes S→C

mss requested S→C
What what the requested Maximum Segment Size

mss requested S←C

max segm size S→C
What was the largest segment

max segm size S←C

min segm size S→C
What was the smallest segment

min segm size S←C

avg segm size S→C
What was the average segment

avg segm size S←C

max win adv S→C
What was the largest window advertisement

max win adv S←C

min win adv S→C
What was the smallest window advertisement

min win adv S←C

zero win adv S→C How many times did zero-sized window advertisement

were sentzero win adv S←C

avg win adv S→C
What was the average window advertisement sent

avg win adv S←C

initial window pkts S→C How many bytes in the first window (before the first

ACK)initial window pkts S←C

initial window bytes S→C How many packets in the first window (before the first

ACK)initial window bytes S←C

ttl stream length S→C What was the total length of the stream (from FIN to

SYN)ttl stream length S→C

missed data S←C How many bytes of data were in the stream that’s miss-

ing?missed data S→C

truncated data S←C The truncated data, calculated as the total bytes of data

truncated during packet capture.truncated data S→C

truncated packets S←C The total number of packets truncated as explained

above. 215



truncated packets S→C

data xmit time S←C Total data transmit time, calculated as the difference

between the times of capture of the first and last packets

carrying non-zero TCP data payload.

data xmit time S→C

idletime max S←C Maximum idle time, calculated as the maximum time

between consecutive packets seen in the direction.idletime max S→C

throughput S←C
What was the data throughput (Bytes/second)

throughput S→C

RTT min S←C
What was the smallest RTT

RTT min S→C

RTT max S←C
What was the largest RTT

RTT max S→C

RTT avg S←C
What was the average RTT

RTT avg S→C

RTT stdev S→C
What was the standard deviation of the RTT that I saw

RTT stdev S←C

RTT from 3WHS S→C The RTT value calculated from the TCP 3-Way Hand-

Shake (connection opening), assuming that the SYN

packets of the connection were captured.

RTT from 3WHS S←C

RTT full sz min S→C
The minimum full-size RTT sample.

RTT full sz min S←C

RTT full sz max S→C
The maximum full-size RTT sample.

RTT full sz max S←C

RTT full sz avg S→C
The average full-size RTT sample.

RTT full sz avg S←C

RTT full sz stdev S→C
The standard deviation of full-size RTT samples.
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RTT full sz stdev S←C

segs cum acked S→C How many segments were cumulatively ACKed (the

ACK that I saw was for a later segment? Might be a lost

ACK or a delayed ACK

segs cum acked S←C

duplicate acks S→C
How many duplicate ACKs

duplicate acks S←C

triple dupacks S→C
How many triple duplicate ACKs

triple dupacks S→C

max # retrans S←C What was the most number of times that a single seg-

ment was retransmittedmax # retrans S→C

min retr time S←C What was the minimum time between retransmissions

of a single segmentmin retr time S→C

max retr time S←C What was the maximum time between retransmissions

of a single segmentmax retr time S→C

avg retr time S←C What was the average time between retransmissions of

a single segmentavg retr time S→C

sdv retr time S←C What was the stdev between retransmissions of a single

segmentsdv retr time S→C

max owin S←C The maximum outstanding unacknowledged data (in

bytes) seen at any point in time in the lifetime of the

connection.

max owin S→C

min non-zero owin S←C The minimum (non-zero) outstanding unacknowledged

data (in bytes) seen.min non-zero owin S→C

avg owin S←C The average outstanding unacknowledged data (in

bytes), calculated from the sum of all the outstanding

data byte samples (in bytes) divided by the total number

of samples.

avg owin S→C

wavg owin S←C The weighted average outstanding unacknowledged

data seen.217



wavg owin S→C

Table 1.1: Detailed list and descriptions of unique fea-

tures extracted from TCP traces.
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