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ABSTRACT

A Non-Intrusive Load Monitoring
Framework for Robust Real-Time

Disaggregation of Smart Meter Data
YUNG FEI (RICKY) WONG

Non-intrusive Load Monitoring (NILM) is a class of techniques used for de-
composing aggregate electrical measurements into their contributing appliances.
It only requires a single sensing point to infer the appliance-specific decomposi-
tion of energy consumption in a residential unit. Fundamental to this is to identify
and model the associations between the appliances and their induced electrical
patterns observable in the aggregate signal.

However, it is not uncommon to encounter situations where the association
is not one-to-one; different appliances can induce similar patterns to result in
poor disaggregation accuracy – a problem that becomes especially true when
only sparsely sampled, scalar-valued aggregate data is available (like from smart
meters). In addition, there is the rarely addressed issue related to the presence
of appliances for which the aforementioned associations are not yet modelled.
If these unknown/unmodelled appliances are not considered in the design of
NILM algorithms, the estimation of energy consumption of known appliances
can be severely affected. This is on top of the further difficulty in distinguishing
between unknown appliances and known appliances with similar patterns, and
the computational challenges in performing disaggregation under a more com-
plex but powerful appliance model. To address these challenges, this thesis pro-
poses a new framework for NILM with improved disaggregation accuracy and
increased robustness, while maintaining computational efficiency for real-time
applications.

First, a new instance of the hidden semi-Markov model for NILM, adapted
from the field of acoustic speech modelling, is introduced to capture salient ap-
pliance state duration information. The proposed model, named factorial variable
transition hidden Markov model, enables incremental calculation of time-varying,
duration-dependent state transition probabilities, to allow for the separation of
appliances with similar patterns. To evaluate its effectiveness in the worst case
scenario, synthetic aggregate data consisting of appliances with exactly the same
power consumption is generated and disaggregated. It was found that the pro-
posed model is highly successful in reconstructing the appliance-level contribu-
tions, as compared to the state-of-the-art methods based on hidden Markov mod-
els (HMMs).



Second, a novel method, Particle-based Distribution Truncation (PBDT), for per-
forming state inference under the proposed model is provided. Unlike standard
exact methods, which are computationally intractable, and standard approxima-
tion algorithms, which are inherently batch-processed, PBDT is a fast real-time
approximation algorithm with good convergence properties. This is achieved
by combining the dynamic programming paradigm of the Viterbi algorithm and
the survival-of-the-fittest principle from particles filters, whereby unlikely solu-
tions are intelligently pruned and computation results amongst groups of related
particles are shared. Together with the proposed model, the outcome is a compu-
tationally scalable approach for disaggregation. In the evaluation over the data
of real houses from the Reference Energy Disaggregation Dataset (REDD), it was
discovered that an average sub-second per-sample processing time is achievable
for problems with as many as 20 billion states, while achieving a disaggrega-
tion accuracy of approximately 80%. Further, empirical results also illustrate near
linear growth in time complexity as the number of appliances to be extracted in-
creases, establishing PBDT as a scalable approach even when a more complex and
powerful model is used.

Third, the benefits of incorporating slowly-decaying power features, common
to certain appliances (e.g. refrigerators), were investigated to further resolve sim-
ilarities between different appliances. This is achieved by relaxing the constraint
that the power consumption for a fixed state is stationary and augmenting the ini-
tially proposed model with relationships between the decay in power consump-
tion and the appliance state duration. The outcome is a specific instance of a
segmental HMM, like those used in speech pattern modelling but with inherited
benefits of the initial model. Results from the evaluation with the REDD dataset
indicate an additional improvement of approximately 5% in disaggregation accu-
racy, with errors due to modelling constraints largely corrected.

Finally, the problem of unmodelled appliances was addressed by extending
the initial model via an additional residual term for capturing unknown contri-
butions of power. The term is imposed with a robust noise model based on com-
pressed sensing to penalise patterns due to unknown loads. Also included is a
steady-state segmentation algorithm based on an earlier work to guard against
spurious spikes in power.

When combined with these additions, the initially proposed model and an
extended PBDT algorithm form a robust real-time disaggregation framework for
NILM. Experimental results using the REDD dataset show that, for each house,
the extraction of the top 5 most energy-consuming appliances amongst unmod-
elled loads is highly successful, with an average correct energy assignment rate
of 83%.
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CHAPTER ONE

INTRODUCTION

1.1 Motivation

Energy has always been a vital part of human civilisation, and in the modern
era, it is more important than ever. Power grids around the world provide the
means to power everything from small electronics and household appliances, to
big industrial systems that are crucial to the foundation of today’s economy and
modern life support systems.

Unfortunately, due to population growth and the increased urbanisation in
developing countries, global energy usage is projected to continue its upward
trajectory, bringing to light the issue of sustainability and resource scarcity. Al-
though the uptake of renewable energy like solar and wind is on the rise, fossil
fuel remains the dominant source of electricity globally. According to the U.S.
Energy Information Administration’s International Outlook 2016 report [U.S16],
fossil fuel accounts for 67% of the total world electricity generation in 2012. With
consideration of this observation and the growing concerns on climate change,
the importance of curtailing energy demand and living sustainably cannot be
overstated.

However, it remains a challenge to encourage energy-saving behaviour
amongst individuals. Among the many reasons which include habits, an im-
portant one is the lack of data on how energy is being used by each appliance.
Without the depth of information available, actions that could be taken are lim-
ited, if not ineffective. In fact, it is difficult to ascertain the best course of action
to take if one were to reduce his/her energy cost based solely on the informa-
tion on electricity bills; their month-long reporting intervals and the presented
total/aggregate energy consumption certainly do not help. Even though the re-
cent widespread deployment of smart meters offers improvement by enabling
energy information to be accessed in a more timely manner, the energy data pro-
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vided is still in the aggregate representation. This forces household occupants to
rely on educated guesses and trial-and-errors in identifying sources of high de-
mand. Hence, it is clear that more detailed information in the form of individual
appliance energy consumption is needed before specific actions could be taken to
effectuate beneficial changes required for sustainable living.

The information can be displayed as a pie chart, showing the proportion of
energy used by each appliance. Or better yet, a time progression on how each
appliance contributes to the total, and suggestions on the best approach to reduce
energy cost without severely impacting comfort levels. One way or another, there
are many other benefits afforded by the availability of such appliance-level data,
with potential outcomes for stimulating energy saving behaviour among house-
hold occupants.

In this thesis, we look at the problem of inferring the energy usage information
of appliances, by decomposing the aggregate electrical measurements obtained
from a single sensing point in a residential setting. The main task involves the
development of a new software algorithm for real-time disaggregation of the total
power consumption data into its appliance-level measurements, thereby allow-
ing the relative proportion of energy used by appliances to be estimated inexpen-
sively and non-intrusively.

1.2 Non-Intrusive Load Monitoring

The direct sensing of appliance energy consumption via dedicated sensors is the
simplest form of appliance monitoring. Off-the-shelf and ready-to-use hardware
can be easily purchased, and setting up is merely a matter of attaching each mea-
surement device to an appliance before connecting them together to form a wire-
less sensor network (WSN) or a power line communication (PLC) network. Col-
lection of data is then achieved through the transmission of sensed measurements
to a central node or a gateway device for logging and analysis purposes.

While the set-up is straightforward and end-use measurements could be accu-
rately obtained, it is not scalable from an installation perspective, given the myr-
iad of sensors that need to be deployed. In and of itself, this may be a sufficient
deterrent for majority of household occupants, limiting installations to only those
who are already conscious about energy usage. Ideally, it will be more effective
to have this appliance-monitoring ”service” rolled out by utilities or third-parties,
without any effort required on users’ part to be involved in the maintenance of
the infrastructure. But, clearly, that is not going to work if direct sensing is to be
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used, given the aforementioned set-up, cost and labour that would be entailed.
Therefore, a less invasive approach to appliance monitoring is required.

Traditionally, less invasive means of obtaining end-use information is per-
formed through an energy audit procedure, where indirect external variables that
might affect energy use are employed to infer end-use consumption. These vari-
ables may include the thermal insulation capacity of a residential unit, weather
data, and information from questionnaires pertaining to household occupants’
behaviour, among others [SU09]. However, because only variables external to the
electrical measurements of appliances are used, estimates may be less accurate
and prone to being biased. This is in addition to the requirement of hiring an
energy-auditing expert, which again limits the potential users to those who are
already conscious about energy use.

Fortunately, there exists another class of methods that is growing in popular-
ity. Introduced by Hart in the 1980s [Har85], the approach, Non-intrusive Load
Monitoring (NILM)1, assigns detectable patterns in the aggregate-level electrical
signals to appliances. These patterns, also known as appliance signatures, allows
contributions of appliances to the total to be inferred, as it is assumed that there
is a direct correspondence between a particular pattern and a given appliance,
much like the one-to-one relationship between a person’s handwritten signature
and his/her identity. Typically, this association is learned during a training stage,
where behaviours of appliances are encoded into usable mathematical descrip-
tions called appliance models.

Considering that only aggregate-level measurements are required in NILM,
no dedicated sensor for each appliance needs to be deployed in users’ premises.
The single-point sensing approach can take on the form of a device attached to
a residential unit’s circuit-breaker panel or it can be an already-installed smart
meter (see Figure 1.1), where electrical values are measured. The measurements
are then disaggregated into appliance-level components via a carefully-designed
algorithm running on a computation device such as a desktop computer, a server
located in the Internet or potentially, even a computationally well-equipped In-
Home Display (IHD) unit.

Being cost-effective, non-intrusive and maintenance-free, NILM is thus an ap-
pealing approach to tackling the lack of appliance-level energy data needed for
stimulating energy-saving behaviour. As such, it will be the subject of study for

1NILM is also often synonymously referred to as ”load disaggregation” or ”Non-intrusive
Appliance Load Monitoring (NIALM)” or ”single-point sensing”.
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this thesis, whereby new algorithms are proposed to improve accuracy in the
real-time disaggregation of total power consumption measurements.

Smart Meter

123
In-Home 
Display (IHD)
with NILM

Residential Unit

Home Area
Network
(HAN)

Refrigerator

Air Conditioner

Washing Machine

Lighting Microwave

Television
Desktop Computer

Disaggregated Output

Aggregate Power Consumption

Neighbourhood
Area
Network (NAN)

Power Line

Figure 1.1: A residential unit with NILM.

1.3 Potential Applications

The development of NILM has far-reaching applications beyond that of home
appliance energy monitoring. Among the prominent ones are:

• Home Automation Systems. In home automation systems, the extracted
appliance-level data from NILM can serve as inputs for further energy effi-
ciency refinement. For example, with a preconfigured utility bill budget for
a given period of time, the latest appliance-level energy information could
be used together with the current household occupancy level for dynamic
balancing of comfort levels and energy cost. Manual non-optimal controls
of appliances are not required as the system adapts to users’ behaviours
and learns the optimum way to conserve energy. In the worst case where
fully automated control of appliances cannot be achieved (due to legacy ap-
pliances), targeted suggestions to reach optimality can be given to guide a
human operator.

• Low-cost Occupancy Detection. Leveraging the single-sensing approach
of NILM, low-cost occupancy detection of household occupants can also
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realised [CBS+13, TWLX15]. The basic idea is, by monitoring only the ag-
gregate measurements, operational states of common appliances can be in-
ferred and thus, convey current occupancy levels of a residential unit. Such
an application might be used as part of smart homes and home automa-
tion systems to automatically turn off equipments when no one is at home.
However, it is easy to see why this aspect of NILM raises privacy concerns
among privacy-conscious individuals, given that the actions of users are
closely tied to the operation of appliances.

• Load-Shed Verification. One of the main functionalities in smart grids
is Demand-Side Management (DSM), whereby control of certain time-
shiftable or non-time-critical appliances like dishwashers are voluntarily
delegated by household occupants to grid operators in exchange for incen-
tives such as lower billing rates. With the aim of balancing energy supply
and demand in the grid, these appliances will be deferred to run at off-
peak periods when energy demand is low. However, DSM is built on top
of a trust model between grid operators and end-users. If an appliance is
tampered to ignore Demand Response (DR) instructions and spoof its real
operational state, household occupants can get a free ride on incentives. To
counteract this, NILM has been proposed as an inexpensive means to veri-
fying that the shedding of the targeted appliances is successful [BJJ+11].

• Inexpensive Validation of Energy-related Policies. Appliance-level data
obtained through NILM may also provide a low cost approach to objec-
tively validating the effectiveness of any implemented energy-related poli-
cies. For instance, restrictions on the usage of certain appliances could be
verified while the estimated appliance-level data pre-policy and post-policy
could be compared to gauge the impact of the implemented policy. The
transparency afforded by data-driven policies is not only advantageous to
policy makers but also to those the policy is imposed on.

• Equipment Fault Diagnosis. Naturally, electrical measurements like volt-
age or current waveforms reveal a lot about the state of devices. For com-
plex devices, access to subcomponents may not be possible. In this regard,
being able to non-intrusively probe for deviations from nominal system be-
haviour allows cost effective diagnosis of faults [DCL+05, SLNC08], which
would otherwise not be possible.
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1.4 Challenges and Research Problems

Despite the promising outlook in numerous applications, NILM is still by itself a
challenging problem. One of the main challenges relates to the previously men-
tioned assumption on the existence of a unique association between an appliance
and a detectable pattern induced by the former. Depending on the type of pat-
terns used, it may be common for two or more appliances in a residential unit to
have the same appliance signature. Thus, it will be difficult to make a distinction
between them.

To get a sense of this, consider a simple case of two appliances, each having
a power draw of 100 Watts. Turning on either of these appliances would gener-
ate a positive step change of 100 Watts observable in the aggregate power signal.
If the change in power is the only type of appliance signature used, it is clearly
non-trivial to ascertain which of the two appliances is the true generator of the ob-
served event. Such ambiguity is often the primary cause of poor disaggregation
accuracy in the literature.

Another important challenge, rarely addressed by past work, concerns the
presence of unknown appliances2. These appliances, unseen by a NILM system
during the training stage, can be introduced into a residential unit via new pur-
chases or guest visits. Their contributions to the aggregate-level measurements
could disrupt the ability of the load disaggregator in performing the intended
tasks, with implications of false positives and reduced disaggregation accuracy.
For example, patterns induced by an unknown appliance could be wrongly at-
tributed to the closest-matching known appliance in the database.

Given that the introduction of unknown appliances is not uncommon in a
real-world setting, a practical NILM system is expected to be able to deal with
such situations. At present however, the design of a robust NILM system that
can account for this is still a challenge, as it is difficult to differentiate between
patterns due to existing appliances and those of unknown appliances. Further
compounding this are scenarios where both the former and the latter are similar.

Also of practical concern is the high computational complexity intrinsic to
the disaggregation of aggregate-level measurements consisting of a large num-
ber of appliances. Being able to reduce computational complexity in such situa-
tions is important for interactive applications that demand real-time estimates of
appliance-level data (e.g. home automation systems), not to mention a require-

2As unknown appliances are appliances that a NILM system has not seen before, models asso-
ciating electrical patterns and these appliances are non-existent. Therefore, the term ”unmodelled
appliances” will also be used interchangeably for the remainder of this thesis.
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ment for low-latency feedbacks needed for increasing user engagement towards
conserving energy.

1.5 Existing Solutions

Various state-of-the-art solutions in the literature have been proposed for ad-
dressing some of the aforementioned challenges. Here, we only present the sum-
mary of trends pertaining to key solutions. For a more complete and expanded
discussion, see Chapter 2.

Improving disaggregation accuracy

In dealing with similar patterns between different appliances, a common theme
amongst recent methods is the use of additional features to aid differentiation.
These usually come in the form of high-dimensional electrical patterns (e.g. spec-
trum of a signal), auxiliary non-electrical data (e.g. from localised motion detec-
tors) or a combination of different features. The main idea is, by using a multitude
of features, similarities in one aspect of a pattern can be resolved by differences
in another. While the idea is overall beneficial in improving disaggregation accu-
racy, auxiliary sensors or custom hardware capable of high sampling rates need
to be retrofitted, contrary to the minimalistic set-up with only a utility-installed
smart meter.

Also separately employed in the state-of-the-art for improving disaggrega-
tion accuracy are more complex models for representing appliance behaviours.
This means, assumptions are relaxed, allowing learned appliance models to re-
flect reality more closely. However, this is at the expense of increasing compu-
tational complexity, with potential violation of real-time requirements for appli-
cations that demand both interactivity and accurate disaggregation. As a case in
point, it appears to be a trend amongst existing solutions utilising complex mod-
els to employ inherently batch-processed methods (e.g. simulated-annealing)
[KJ12, KAL11]. Ideally, it would be of interest to resolve the conflicting need for
better models and real-time computation via carefully-designed heuristics and
better structural representations of candidate estimates.

Dealing with unknown appliances

Unfortunately, there are limited investigations done explicitly for extracting con-
tributions of known appliances in the presence of unknown loads. A thorough
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search in the literature either reveals little mention of accounting for such situa-
tions, or unrealistically assumes that every appliance in a residential unit can be
modelled. For the two that do address the problem [KJ12, TWLT16], an additional
noise component representing unknown appliances, together with prior assump-
tions, are included in the model for disaggregation. However, both approaches
are inherently batch-processed, with limited provisions for real-time applications.

1.6 Research Objectives

With consideration of the general limitations outlined in the previous section,
it is clear that there remains an open question as to whether a robust real-time
disaggregation approach, without the luxury of custom hardware, is feasible. To
that end, we will constrain our attention to the following aims:

• Resolution of similarities in electrical features induced by different appli-
ances without the need for high frequency (kHz) data or auxiliary non-
electrical measurements.

• Real-time disaggregation of electrical measurements, representative of
those obtainable from the home area network (HAN) interface of smart me-
ters.

• Robust extraction of power contributions of known appliances even in the
presence of unknown loads.

Each of these forms the core component of this research, where solutions are
proposed for related problems in stages, before being integrated into a framework
usable for disaggregating aggregate-level data of real houses.

1.7 Contributions

In meeting the stipulated objectives, the research has resulted in the following
main contributions:

• Appliance Model with Time-varying State Transition Information. Un-
derlying each appliance in a broader class of latent variable models is an
internal state (e.g. ON, OFF etc.) that determines the appliance’s electri-
cal measurements. While this class of representations is natural and its use
underlies some of the best-performing NILM approaches in recent years,
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assumptions on state dependencies have to be made for tractable computa-
tions. Common realisations are based on hidden Markov models (HMM)
[PGWR12, KJ12, EBE15, MPB+16] and to a lesser extent, instances from
a general class of hidden semi-Markov models (HSMM) [KAL11]. In our
work, we proposed a new variant of the latter for NILM, adapted from the
field of acoustic speech modelling [Vas91, RW92], for enabling the separa-
tion of appliances with similar signatures, and the incremental calculation
of time-varying duration-dependent state transition information.

• Method for Fast Inference of Appliances’ States. Like any appliance mod-
els based on factorial HMM (FHMM) [GJ97], inferring the unknown states
of appliances under the proposed model, given the aggregate-level mea-
surements, is inherently a computationally-intensive task; the space of solu-
tions grows exponentially with the number of considered appliances, with
additional complexities pertaining to the inclusion of state durations in the
model. To that end, we proposed a novel fast real-time approximation al-
gorithm with good convergence properties, while borrowing the dynamic
programming approach of the Viterbi algorithm and the survival-of-the-
fittest principle from particle filters. The algorithm generates plausible can-
didate solutions called ”particles” as new aggregate measurements arrive,
before truncating away those which are highly unlikely given current cir-
cumstances, historical measurements and past estimates. In the implemen-
tation, the distribution of particles at each discrete time step is exploited to
accelerate computation, enabling a further speed improvement of up to 20
times over a direct implementation. Altogether, this contributes to an em-
pirically linear growth of time complexity as the number of appliances in-
creases. The proposed method is thus a computationally scalable approach
for real-time disaggregation.

• Appliance Model for Slowly-decaying Features. The power consumption
for some appliances (e.g. refrigerators) gradually decreases from the peak
at the onset of the turn-on period to a nominal value, as the appliance re-
mains in the same state. To account for these slowly-decaying features, the
proposed appliance model with time-varying state transition information is
extended to further improve disaggregation accuracy and the model’s rep-
resentation of reality. The result is a specific instance of a segmental HMM
used in speech pattern modelling [Rus93], with inherited benefits of the ini-
tially proposed model. In terms of model representation, the power con-
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sumption for a given state is no longer assumed to be stationary; its mean
is modelled to vary according to the state dwell time. This formulation
extends the flexibility of the initial model without requiring any baseline
changes, thus largely maintaining compatibility with the proposed state in-
ference method mentioned previously.

• Integrated Real-time Disaggregation Framework with Robust Noise
Model. Inspired by the work of Kolter and Jaakkola [KJ12] alluded to in Sec-
tion 1.5, the first two contributions are augmented with a noise model based
on compressed sensing to form a robust real-time disaggregation frame-
work. It will be used for extracting power consumption of known appli-
ances without being severely affected by the existence of unknown loads.
To also guard against the problem related to spurious spikes in power, a
steady-state segmentation algorithm based on Hart’s work [Har85] is used.
Altogether, the framework allows for models of unknown appliances to be
left unspecified, forming an alternative means to keeping computational
complexity low, while enhancing the robustness of the real-time disaggre-
gation process against the effects of unknown loads.

1.8 Organisation of the Thesis

The remainder of this thesis is structured as follows.

Chapter 2: Non-intrusive Load Monitoring: A Review

Chapter 2 presents a review of the methods for Non-intrusive Load Monitoring
(NILM). The different stages of a typical NILM system are first outlined. Then,
details relevant to each stage are described, with particular emphasis on the types
of appliance signatures, appliance models and load disaggregation techniques as
used in the literature. With the outcome of the review, a baseline objective and a
more detailed research scope of this thesis are presented.

Chapter 3: Modelling of Appliance Behaviour

Chapter 3 begins with a general overview on related approaches taken for mod-
elling appliance behaviour. Then, with consideration of the goal of this research,
a new model with dynamic state transition probabilities based on state dwell time
is proposed for NILM. This is followed by details pertaining to the learning of pa-
rameters for the new model, where a robust procedure and a method based on an
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information criterion – minimum message length (MML) – are presented. Subse-
quently, the proposed model is justified and validated through an experiment to
show how different appliances which consume the same power consumption can
be identified correctly from the aggregate measurements, while also demonstrat-
ing the value of the dynamic state transition probabilities in aiding incremental
calculations of probability values needed for the real-time state inference method
described in subsequent chapters.

Chapter 4: Appliance State Inference

The problem of appliance state inference under the proposed appliance model is
explored in Chapter 4. Potential solutions such as the Viterbi algorithm and alter-
native approximation methods are described from a computational complexity
standpoint and in terms of their ability to meet real-time requirements. Then,
in light of their limitations, the chapter presents a new computationally efficient
state inference algorithm – Particle-based Distribution Truncation (PBDT). In the
end, experimental results of applying the devised method on a public dataset of
real homes are shown and discussed.

Chapter 5: Robust Extraction of Appliance Power

In Chapter 5, we consider the more challenging task of load disaggregation in
the presence of unmodelled appliances, unlike in previous chapters. Specifically,
special attention is devoted to the development of techniques which are resilient
against the effects of unknown devices in homes, enabling the power contribu-
tions of modelled appliances to be extracted robustly. Implications of not taking
into account unknown loads are demonstrated, and extensions to the techniques
as discussed in Chapter 3 and Chapter 4 are detailed. In closing, using the power
measurements of real homes as test data, the chapter provides a quantitative anal-
ysis on the method’s extraction ability and its robustness.

Chapter 6: Conclusion and Future Work

Finally, Chapter 6 summarizes the key contributions of the thesis and discusses
potential future directions for this research.
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CHAPTER TWO

NON-INTRUSIVE LOAD

MONITORING: A REVIEW

This chapter provides a background on the state-of-the-art approaches in Non-
intrusive Load Monitoring (NILM). We first present an overview of the key de-
sign considerations of a typical NILM system, with particular attention devoted
to the behaviour of different types of appliances, electrical signal acquisition,
common features used for discriminating between appliances, modelling tech-
niques and methods for performing disaggregation. The discussion centres on
the main issues presented in Section 1.4 and expands on the brief treatment of
existing solutions given in Section 1.5. Then, in relation to the robustness re-
quirement and the real-time requirement in disaggregating smart meter data, we
present a summary of limitations in the literature. This provides the motivation
of the work presented in this thesis. Also, to facilitate the discourse on the pro-
posed methods in the subsequent chapters, a review on the theory of Bayesian
graphical models, hidden Markov models and standard approaches for perform-
ing state inference is given. Parts of the chapter related to the review of NILM
have been published to a conference paper [WcDW13]. For a different outlook,
the reader can refer to two other comprehensive surveys on load disaggregation
– [ZR11a] and [ZGIR12]. In closing, a summary of limitations in existing ap-
proaches is given, before descriptions pertaining to public energy consumption
datasets of real homes which can be used for benchmarking are provided.

2.1 Introduction

As described in Chapter 1, Non-intrusive Load Monitoring (NILM) or load dis-
aggregation is a class of techniques used for estimating the component signals
attributable to individual appliances, given only the availability of a composite
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signal. In this way, NILM is similar to a blind source separation (BSS) problem
[Car98]. Although it has been nearly three decades since its introduction by Hart
[Har85], research in this area has been slow until recent years. The present uptake
of NILM in the research community is largely driven by the potential integration
with smart grid systems, the improved computational throughput enabled by
new hardware technologies and the recent publications of datasets pertaining to
household and appliance measurements, among others.

Generally, the process of NILM consists of four main stages. As shown in
Figure 2.1, they are: (1) Electrical Signal Acquisition, (2) Feature Extraction, (3)
Appliance Modelling and (4) Appliance Identification. The first stage involves the
sampling of aggregate electrical signals such as voltage and current waveforms
using Analog-to-Digital converters (ADC). Then, electrical features are extracted
from the sampled signals, before their association with the operational state of
appliances are learned and encoded into appliance models as part of a training
procedure. Finally, at disaggregation time, the extracted features are classified
according to the learned models to identify the contributing appliance.

Electrical Signal
Acquisition

Feature
Extraction

Disaggregation/
Appliance

Identification

Appliance
Modelling

Only during 
learning/training

Appliance Models

Inferred 
Appliance 
State/Power

Figure 2.1: Stages of NILM.

It turns out that techniques developed in the past are mainly variations in
terms of these four stages, with each stage intricately linked to the others. For
example, the type of acquisition hardware determines the features that can be ex-
tracted and the employed features govern the appropriate types of models that
could be used. This in turn controls the nature of the NILM algorithm and the
associated appliance recognition scheme. As such, subsequent discussions on
existing approaches will be made in terms of these aspects. However, before de-
scribing the core aspects of NILM, we will first provide a brief treatment of the
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different kinds of appliances in the next section to put into perspective the oper-
ational differences that could be exploited for aiding disaggregation.

2.2 Types of Appliances

Appliances can take on many forms. Some can be working independently in the
background without any user interaction, while others are directly controlled by
users. In this regard, the detection of appliances in the aggregate signal warrants
a thorough understanding on the operational behaviours of the different classes
of appliances in the real-world setting. Four categories of loads can in general be
defined according to Hart [Har92] and Zeifman [ZR11a]:

• Class-I: Binary-state appliances that operate in two distinct ON/OFF states
such as lights and toasters;

• Class-II: Multi-state appliances with finite state machines (FSM) represen-
tation like refrigerators and washing machines. For example, the former
could transition from the ON state where the compressor is running to the
state corresponding to the defrost cycle;

• Class-III: Continuously variable loads which draw power in a continu-
ous non-discrete manner such as light dimmers and variable-speed drives
(VSD) appliances (e.g. power drills and commercial Heating Ventilation
and Air Conditioning (HVAC) systems). This group is more common in
industrial and commercial settings [RLBH94];

• Class-IV: Always-on appliances with constant power consumption like
household security cameras and wireless routers. Appliances of this kind
are not manually toggled by users and they run in the background 24/7.

In terms of the challenges in disaggregation, Class-I and Class-II are relatively
easy to detect. But, because they make up the bulk of appliances in a residential
unit, disaggregation errors might occur due to the more likely non-unique associ-
ations between electrical patterns and appliances. Even though Class-IV devices
may not contribute much to the overall energy consumption, they are typically
unmodelled and notorious for shifting the aggregate power signal upwards, thus
severely affecting the extraction of modelled loads from the aggregate measure-
ments. To date, Class-III appliances remain the most challenging ones to extract,
given their on-demand continuous variation and the potentially non-repeating
behaviour.
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An alternative characterisation of the different classes of appliances has also
been given by Sultanem [Sul91]. However, they are grouped by the electrical
components embedded in devices as follows:

• Resistive appliances: Examples in this class are dominantly resistive with
little or no capacitive or inductive elements. Heaters and incandescent light-
ing belong to this category. Due to the resistive nature, only real power1 is
drawn from the mains in theory and transient electrical patterns at the onset
of energisation are virtually non-existent;

• Pump-operated appliances: Appliances of this kind have pumps driven by
electric motors. Common examples include refrigerators, dishwashers and
washing-machine drain pumps. The inductive nature of the electric motors
means reactive power will be drawn. This is on top of the inducement of
odd-numbered current harmonics during operation, and the prominent and
lengthy transients when these appliances are switched on;

• Motor-driven appliances: The operational behaviour of this class of loads is
similar to the pump-operated ones, but differ in that the transients are less
salient at the onset of energisation. Examples are appliances with motors
only, such as fans and electric mixers;

• Electronically-fed appliances: These appliances may refer to those which
are powered via switched-mode power supplies (SMPS). Due to the use of
high-frequency switching for output voltage regulation, loads belonging to
this class induce high-frequency noise on the electrical line. Hence, they are
generally associated with the rich spectral content in the kHz-MHz range
when being operated and the short highly salient transients at the onset of
turning on [PRK+07, GRP10]. Prominent examples of this class are personal
computers, televisions and mobile phone chargers;

• Electronic power control appliances: Despite being mentioned, Sultanem
did not provide a clear description on this category. However, judging
from his remark on the dependence of load characteristics on the operating
power level, this class might refer to the group of appliances which are in-
ternally controlled using proportional-integral-derivative (PID) controllers

1It is colloquially called ”power” and measured in Watts, but in electrical engineering, the
technical term is ”real power” or ”active power”. This is to distinguish it from another related
quantity named ”reactive power” which is measured in the unit Vars. In this thesis, whenever
”power” is used without the quantifiers ”real” or ”reactive”, the former is implied. The formal
definitions of both real power and reactive power are given in Section 2.3.2.
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with a feedback mechanism. In this way, it may include the previously men-
tioned Class-III appliances;

• Fluorescent lighting: Lighting of this variant is in its own category accord-
ing to Sultanem [Sul91]. This is possibly due to the intrinsic two-stage tran-
sients when powered on. Also characteristic of this class are the high third-
order harmonic content embedded in the current waveform and the large
phase difference between the voltage and current signals. Though, modern
fluorescent lamps with electronic ballasts could additionally induce high-
frequency noise on the electrical line, owing to the use of switching elec-
tronics like those for SMPS [GRP10].

Regardless of the rules used for grouping, there exists different effective strate-
gies for correctly detecting the disparate classes of appliances from the aggregate
measurements. For example, an appliance which induce large harmonic con-
tent onto the electrical line may be best identified using spectrum features and
appliances with distinctive transient patterns during start-up could be better off
detected using shape attributes. A more detailed description on the type of elec-
trical signal acquisition and the various extractable features used in existing ap-
proaches are presented in the next and subsequent sections.

2.3 Electrical Signal Acquisition

The first stage of NILM is the acquisition of electrical data. Depending on the
appliance detection requirement at hand and the nature of the algorithm used for
disaggregation, the data could be fundamental electrical measurements such as
voltage and current waveforms, or derived electrical quantities like real power,
root mean square voltage (Vrms) and root mean square current (Irms). One way or
another, the data can be dichotomised into two types: high sampling rate and low
sampling rate. In this section, we present the details of each type and illustrate
with examples from past works.

2.3.1 High Sampling Rate

Voltage and current waveforms are inherently high sampling rate data which are
typically represented by digital samples obtained from Analog-to-Digital con-
verters (ADC). To meet the signal reconstruction requirement stipulated by the
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Nyquist-Shannon sampling theorem [Jer77], the sampling rate in the digital con-
version process should be at least twice the highest frequency content of the ana-
logue signal. Given that the voltage signal at the power outlet of a residential unit
(in Australia) is a 50Hz sinusoidal waveform with Vrms of 240V, voltage samples
have to be collected at a minimum rate of 100Hz, whereas the current signal is
load-dependent; if the load is linear, the waveform is sinusoidal with the same
frequency. But, when non-linear loads are present (e.g. SMPS), non-sinusoidal
current with high order harmonic frequency content will be drawn. Altogether,
this means sampling rate in the kHz range or more is required for capturing
salient features. For example, Patel et al. [PRK+07] utilised a data acquisition
module with a sampling rate of 100MHz to capture high frequency noise intro-
duced on the electrical line by appliances, while Kolter and Johnson [KJ11], in
their collection of raw voltage and current samples for disaggregation, employed
sampling rates of 15kHz.

In practice however, the direct usage of raw data is not common in NILM.
Rather, spectrum-based quantities from high sampling rate data are more fre-
quently used. These can come in the form of Fourier Transforms (FT) or Wavelet
Transforms (WT). For FT, the frequency representations of both voltage and cur-
rent are

Vf[k] =
N−1∑
n=0

v[n] exp−j2πkn/N (2.1)

If[k] =
N−1∑
n=0

i[n] exp−j2πkn/N , (2.2)

where v[n] and i[n] denote the nth sample value of the voltage and current wave-
form respectively, j is the imaginary unit used in complex numbers, k is the index
of the frequency component, and N refers to the number of consecutive samples
used for the computation. The outcomes are high-dimensional feature vectors,
Vf and If, computed at every N samples, which could be used as the basis for
appliance identification.

While FT is just one example, the availability of high sampling rate funda-
mental electrical data allows numerous other derived electrical quantities to be
computed (see Section 2.4 for details). This means little or no restrictions are
imposed on the NILM algorithm designer as he/she could possibly employ any
appropriate features from the waveform data to identify the different types of
loads discussed in Section 2.2. In fact, it has even been shown that a myriad of
quantities can be used in tandem as features of higher dimensionality to boost
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disaggregation accuracy [LNKC10a]. Though, the downside is the need for non-
consumer-friendly custom hardware capable of high sampling rates and an elab-
orate monitoring set-up for handling the naturally high influx of data. Either way,
as we shall see in the next section, low sampling rate data of certain derived elec-
trical quantities can be easily computed from high sampling rate raw voltage and
current measurements but not vice versa.

2.3.2 Low Sampling Rate

We consider low sampling rate data as those measured at rates below∼1Hz using
standard consumer-focused instrumentation equipments such as smart meters
and off-the-shelf metering devices. Measurements like hourly aggregate energy
consumption (in kWh) and power consumption (in Watts) reported in sub-Hz
rates are typical examples2. While high sampling rate electrical data are techni-
cally employed by these devices for internal calculation of the aforementioned
quantities, they are inaccessible for external use (e.g. feature extraction). There-
fore, low sampling rate derived quantities from such equipments have to be used
as it is for disaggregation.

Perhaps, the most common form of data utilised in this context by NILM re-
searchers in recent years are real power and to a lesser extent, reactive power. For
a given time interval T , they are both defined as

P (t) =
1

T

∫ t

t−T
v(τ)i(τ)dτ (2.3)

Q(t) =
1

T

∫ t

t−T
v(τ)i

(
τ − 1

4f

)
dτ, (2.4)

where P (t) and Q(t) are the real power and reactive power for the time interval
starting at t − T and ending at t; v(τ) and i(τ) are the voltage and current signal
value at time τ respectively; and i

(
τ − 1

4f

)
is i(τ) shifted by π/4 radians relative

to v(τ), with f being the fundamental frequency of v(τ) (e.g. f = 50 in Australia).
Being derived quantities which are computed at relatively coarse time inter-

vals (i.e. with the value of T corresponding to sub-Hz rates), fine-grained ob-
servable electrical properties of high frequencies are lost. As such, robust NILM
algorithms utilising only low rate power-related measurements are more chal-
lenging to design correctly. Indeed, any proposed solution has to contend with

2The Australian Smart Metering Infrastructure Minimum Specification [NSM11] mandates
that a smart meter should be capable of reporting real power measurements up to a rate of 0.2Hz.
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the well-known issue of similarities in power consumption between appliances;
otherwise, ambiguous situations with a certain change-in-power value shareable
among multiple appliances are non-trivial to resolve. Also, the often used one-at-
a-time assumption [Har92] for reducing computational requirements, where only
one appliance is able to change state in one discrete time step, does not generally
hold at low sampling rates.

Yet, despite the innate difficulties, the disaggregation of low rate electrical
data has been predominantly the research focus in NILM lately. This is particu-
larly because of the many intrinsic benefits, which include the reusing of existing
monitoring infrastructure (e.g. smart meters), the cheaper set-up given the gen-
erally low volume of data, and the low complexity deployment procedures from
the perspective of both end-users and utilities. As such, the widespread deploy-
ment of NILM systems using only low sampling rate data is more achievable as
compared to those based on high sampling rate data, and in this thesis, we will
focus our attention on the former, where only low rate (e.g. ∼1Hz) real power
measurements are available.

2.4 Appliance Signatures

Following the acquisition of aggregate electrical data, of interest are the ex-
tractable features that could be used as signatures for appliance identification.
While the association between features and appliances should be unique in the
ideal case, it is often difficult to achieve in reality, given the large number of ap-
pliances in a typical residential unit and the potential operational similarities be-
tween different appliances. For these reasons, the choice of appliance signatures
remains a key design consideration in NILM, especially for situations where raw
high sampling rate voltage and current waveform data are not obtainable.

In this section, we present a survey of the various appliance signatures used
in existing approaches with respect to a categorisation shown in Figure 2.2, while
also discussing how they relate to the task of disaggregation in the context of
the aforementioned uniqueness problem. Appliance signatures belonging to the
steady-state category are first introduced, before those in the transient and non-
traditional categories are discussed.
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Appliance Signatures
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Figure 2.2: Categorisation of appliance signatures.

2.4.1 Steady-State Signatures

Steady-state signatures are persistent features which are detectable from the ag-
gregate measurements during the steady-state operation of appliances. As the
signatures are naturally stable for long time periods, data with small reporting
intervals is generally not required, although high sampling rate measurements
of voltage and current waveform are still needed when derived electrical quan-
tities, used as part of steady-state signatures, are not provided by the metering
device. Features based on power-related measurements are examples of the for-
mer, since, as mentioned in Section 2.3.2, most consumer-focused instrumenta-
tion equipments could record real power consumption. To that end, steady-state
power-related quantities are one of the most popular types of signatures used in
the recent years.

In the seminal work by Hart [Har92], step changes in steady-state aggregate
real power, ∆P , and step changes in steady-state aggregate reactive power, ∆Q,
are used as the basis for appliance identification. The premise is, if an appliance
is switched on at a certain time, it is expected that at least one of ∆P and ∆Q will
be non-zero. In the case where historical values of ∆P and ∆Q corresponding
to an appliance have been characterised, future observations of similar values
can be inferred to be coming from the same appliance. For example, if a given
appliance is known to consume 200W and 100Var during steady-state operation
based on some prior knowledge, then any future observed perturbations in the
ballpark of +200W and +100Var are likely due to that appliance being switched
on. Likewise, step changes of similar magnitudes in the negative direction could
be attributed to turn-off events of the same appliance. In this respect, the pair
(∆P,∆Q) can be treated as a two-dimensional signature that could be visualised
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in a 2D map shown in Figure 2.3, and each newly observed (∆P,∆Q) is estimated
to be arising from the closest cluster based on some distance metric. Though, in
doing so, care must be given to the extraction of the steady-state values of power
quantities, considering that appliances, especially those with high inductance or
capacitance, are notorious for introducing transients in the power consumption
signal (e.g. surge in power) when turned on. Hence, in his implementation, Hart
has included an algorithm for disregarding non-stable values when computing
∆P and ∆Q.

While the idea is overall simple, Hart’s prototype, like others based on clus-
tering in the ∆P -∆Q space [CA98a, MHHE11], has one main issue. That is, it is
difficult to distinguish between appliances with similar values of (∆P,∆Q). The
problem is especially profound for the case of low power loads since many house-
hold appliances fall within this range, as can be seen in the bottom left corner of
Figure 2.3 where many cluster centroids overlap with one another. In fact, from
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Figure 2.3: Centroids of clusters associated with the ON state of appliances. The ap-
pliance data used for generating this figure is from the AMPds dataset [MPB+13]. For
the purpose of illustration, each appliance is treated as only having one ON state, even
though appliances could have multiple ON states (e.g. different settings) in reality.
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Hart’s own experiments [Har92], appliances with power consumption below ap-
proximately 150W could not be extracted reliably.

To counteract this problem, steady-state spectrum-based signatures have thus
been proposed as follow-up improvements. For instance, Cole and Albicki [?]
explored the use of higher order harmonics associated with the current signal via
means of a 256-point Fast Fourier Transform (FFT). He found that the harmonic
content induced by loads during steady-state operation is sufficiently repeatable
between measurements to warrant its use as an appliance signature. Although
not implemented as a complete system, he further suggested the utilisation of
both steady-state power level changes and higher order harmonic content for
load identification.

Following this is the work of Laughman and his colleagues [LKC+03]. They
augmented the existing ∆P -∆Q space with additional dimensions representing
the higher-order harmonic components of the current signal, and they showed
that by including the change in steady-state third order harmonic content as an
extra feature, overlaps in the original ∆P -∆Q space can be resolved. The use
of spectral features computed using FFT in this way has motivated others in
later work to do the same, even though some only used spectrum-based signa-
tures without regard for features in the original ∆P -∆Q space [SNL06, PRK+07,
GRP10, LWP12].

In particular, Patel et al. [PRK+07] and Gupta et al. [GRP10] exploited the
continuous Electromagnetic Interference (EMI) voltage noise naturally induced
by certain appliances (e.g. SMPS) on the electrical line during steady-state oper-
ation. Their set-up consist of a data acquisition hardware capable of capturing
spectral content in the frequency range of 36kHz to 500kHz, which allows them
to profile the operational state of household appliances using high-dimensional
feature vectors obtained from frequency transforms of the time-domain voltage
signal. Concerns of overlaps in the new feature space have been validated and it
was found that spectral features in the high frequency range is especially distinct
among different brands of appliances. Further, for cases with multiple appliances
with the same brand, they also discovered that distinction could still be made
due to variation in the spectral content as a result of manufacturing variability of
household appliances.

Despite achieving detection accuracies of ∼90%, there are a number of lim-
itations and open questions. First, it is not clear how appliances which do not
continuously emit significant EMI are to be detected. Examples, as remarked by
the authors [GRP10], are resistive appliances like dryers and stoves; and old loads
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without switch-mode power supplies. Second, as only spectral features are used,
appliances could be detected but their energy consumption cannot be estimated.
Also noted by Zeifman and Roth [ZR11a] in their own survey is the possible de-
pendence on the topology of the electrical network of a house, given that the
observed spectral content could in addition be a function of the stray inductance
or capacitance of wirings. This means signatures may differ depending on where
in the electrical network the EMI is measured.

Apart from the aforementioned features, there also exists one other uncon-
ventional type of steady-state signature based on raw voltage and current wave-
forms. First investigated by Lam et al. [LFL07], the concept depends on the use of
the phase trajectory of the voltage signal (V) with respect to that of the current sig-
nal (I). The trajectory, when plotted and visualised as a locus in the V-I plane over
one complete waveform cycle (see Figure 2.4), can be treated as a feature vector. It
was found that appliances of the same type have similar V-I trajectories, allowing
appliances to be grouped together objectively according to the component-level
category discussed in Section 2.2. While the feature is appealing and may resolve
overlaps in ∆P -∆Q space, the authors only frame it in the context of building a
taxonomy of electrical appliances; load disaggregation using extracted V-I trajec-
tory was not tested.

In summary, from the standpoint of distinguishing between similar appli-
ances, it is apparent that steady-state signatures in the form of spectrum-based
features and raw waveform trajectory could outperform power-related features
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Figure 2.4: Normalised voltage and current waveform over one cycle and the correspond-
ing V-I trajectory. The data used for generating this figure is from house 3 of the REDD
dataset [KJ11].
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alone. However, due to the need for raw waveform data when deriving high-
dimensional features, and the requirement of non-consumer-focused instrumen-
tation devices capable of high sampling rates, they do not conform to our research
objectives as stipulated in Section 1.6. Therefore, power-related features remain
the focus of our research, but attention is given to new intelligent ways to resolve
overlaps without the use of raw waveform data. Nevertheless, one important
point should be made with regards of the class of steady-state signatures. That is,
they are generally incapable of tracking Class-III loads (e.g. variable loads) as ap-
pliances belonging to this category do not commonly change power consumption
in discrete levels.

2.4.2 Transient Signatures

Closely tied to the nature or type of appliances, transients are non-stable elec-
trical patterns which can be observed when appliances switch from one state to
another (e.g. OFF to ON). Common examples are higher-than-rated consumption
of power at times when motor-based appliances are first turned on, followed by
gradual decrease to steady-state values; this is an effect that is attributed to the
increase in electrical impedance as the motor spins up to its nominal rotational
speed. Hence, despite acting as nuisances in the extraction of steady-state fea-
tures, transients are especially suitable to be appliance signatures for they charac-
terise the behaviour of appliances at the electrical level.

Being the foundation for most transient-based techniques that follow [NL96,
KLL97, LKC+03], one of the first prominent works in this area was done by Leeb
et al. [LKLS93, LSK95]. In their approach, a multi-scale prototype transient event
detector for NILM was developed to map transients and the associated time pro-
gression of spectral content of the current waveform to the corresponding ap-
pliances. The outcome is a tree-structured decomposition scheme to reduce the
amount of training required for each appliance, given that only one appliance
signature is needed to summarise the operational characteristics of a class of re-
lated appliances. For instance, the general transient shapes of various induction
motors are similar; the magnitude and duration are just a scaled version of one
another. Using this observation, it was shown that applying a stored transient
signature of a motor to identify a motor of different brand which is not recorded
in the database is possible.

As an extension to the aforementioned work, Cox et al. [CLSN06] built upon
the existing detector to investigate transients related to line voltage distortions
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when appliances change states. In contrast to the previous method, no current
measurements is needed; instead, the spectral envelope of both live-to-neutral
and neutral-to-ground voltages are computed before any extracted transient fea-
tures are classified. This means any power outlet in the house can be conveniently
used as a sensing point to detect the operational states of all appliances. Interest-
ingly, the use of spectral content from voltage transients in this regard mirrors the
later work by Patel et al. [PRK+07] except that Patel and colleagues utilised wide-
band bursty EMI signals in the high frequency range at times when appliances
are switched on, in addition to the steady-state continuous EMI described in Sec-
tion 2.4.1. Chang et al. [CYL08] later followed up with an alternative approach by
introducing their own turn-on transient energy detector. The detector is based on
an iterative algorithm that computes the energy associated with a transient event,
thus providing a different way of identifying appliances of interest.

Overall, transient signatures are richer in information compared to their
steady-state counterparts. However, there are some issues that impede their
widespread use. Firstly, switching events that are in close proximity with one an-
other in time would produce composite/overlapping transient trajectories which
are difficult to be separated [NL96]. Secondly, although turn-on events are often
investigated for transients, mapping turn-off events is hard, given that on-to-off
transitions do not typically generate transient patterns in most cases [Har92]. And
lastly, there is the inevitable requirement of using high sampling rates to capture
significant transient patterns. Unless a separate, more capable add-on device is
installed at the metering point, the use of transients as sole discriminants in load
disaggregation is limited when only smart meter data is available.

2.4.3 Hybrid and Non-Traditional Signatures

Apart from the two main groups of appliance signatures, there exists some oth-
ers which do not fit into the categorisation of steady-state and transient. These
signatures are often not used in a standalone manner as they serve to augment
those which have been discussed in the previous two subsections. Broadly, they
can be subdivided into those that are combinations of steady-state and transient
electrical patterns, those that are augmented with temporal features and those
that exploit contextual features such as temperature.
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Hybrid Electrical Features

The combined use of both steady-state and transient signatures is a natural de-
velopment, considering that some electrical features are more prominent for one
class of appliances but not the others. Case in point, from Section 2.2 and the dis-
cussion provided by Sultanem [Sul91], highly resistive loads like heaters do not
commonly show distinctive transient characteristics while other types of appli-
ances with inductive or capacitive elements do. Therefore, it is difficult to sepa-
rate a set of resistive appliances with transient features alone. However, by using
transients as discriminants in the first step of a disaggregation process, resistive
appliances could be distinguished from those which are non-resistive before sep-
aration within the resistive class is made based on other signature types such as
∆P and ∆Q. Similar arguments in favour of this combined approach have been
suggested by Norford et al. [NL96] and Laughman et al. [LKC+03].

The work of Laughman et al. [LKC+03] has been noted in Section 2.4.1 for
improving upon the use of steady-state power-level changes by means of steady-
state spectrum-based features. On top of that, they also included the analysis
of transient signatures adapted from [LSK95] as part of their exploration. While
only plans were mentioned for further integration work, their preliminary inves-
tigation revealed that the combination of spectrum-based features and transient
signatures allows Class-III loads (e.g. variable-speed drives (VSD) loads) to be
tracked non-intrusively. Specifically, by exploiting the similarities in variation be-
tween the time progression of real power and the harmonic content of the current
signal, and by assuming that the harmonic content of a certain order is largely
generated by VSD loads but no other appliances, the variable component of the
aggregate power consumption can be extracted and removed. This allows the
leftover signal to be disaggregated using standard techniques based on steady-
state signatures.

Also relevant to the use of hybrid electrical features is the approach proposed
by Liang et al. [LNKC10a, LNKC10b]. Their work is unique in that it is seem-
ingly the first to include more than a few types of electrical patterns in a for-
mal disaggregation framework. In particular, raw current waveforms, real and
reactive power, harmonic content in current signals, instantaneous admittance
waveform, instantaneous power signal, eigenvalues of current waveforms and
switching transient waveform are all extracted to jointly contribute to the disag-
gregation process. From their experiments, it was revealed that the combined
approach outperformed all cases where only a single feature type is utilised. Un-
fortunately, due to the dependence on raw high sampling rate voltage and current
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waveform data, this diverse set of electrical features cannot be used when only
consumer-focused instrumentation equipments are available. Nevertheless, their
work is a valued contribution as it extends the previously mentioned view set out
by Norford et al. [NL96] and Laughman et al. [LKC+03].

Further contributing to the development in this area are the features proposed
by Wang and Zheng [WZ12]. In addition to the use of steady-state and tran-
sient power, basic units of triangles and squares, which are consistent with fast
switching events and steady working events respectively, are utilised to represent
a power consumption curve across time. Thus, the main outcome of the feature
extraction process include geometric properties of these shapes. Interestingly, the
concept of power decomposition in this way has also been briefly explored by
Cole and Albicki [CA98b] to segment the power consumption curve into slopes
and edges.

Temporal Features

Temporal features inherent to the operation of appliances have also been utilised
in the literature for facilitating load disaggregation. The two main realisations are
the dependence of future operational states of appliances on historical states; and
the duration of states.

The former, also known as state transition information, is often associated
with finite state machine (FSM) appliances. For instance, a washing-machine
usually has to visit a series of states sequentially during normal operation; the
”wash” state precedes the ”rinse” state, which in turn leads to the ”spin” state.
Being able to take into account the structure of such transitions is one other way
in which overlaps in feature space can be resolved. As an example, if there is
more than one appliance in the system with power consumption of 150W and
we observed a change in steady-state real power value of 150W, we can narrow
down the number of potential hypotheses by also considering the state dynamics
of competing appliances. While the use of state transition information was first
noted by Hart in his seminal paper [Har92], the feature was not actually utilised
until much later by Kolter and Johnson [KJ11] and Zia et al. [ZBZ11], among
others [PGWR12].

Alternatively, state durations, when being used as signatures, characterise the
length of time spent by an appliance in a given operational state. The main idea
is that the extent of an appliance being in an ON/OFF state can vary between
different appliances and thus, it could be additionally employed to improve dis-
aggregation accuracy. Although the duration is in general dependent on a lot of
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other factors (e.g. users’ behaviour, time-of-day, day-of-week etc.), well-defined
statistical variations can still be modelled and exploited [KAL11]. Refrigerators,
for instance, cycle between on and off states nearly periodically, and washing-
machines, due to the deterministic control by their internal firmware, spend rela-
tively similar amount of time in the ON state whenever they are being operated.
This is in addition to users’ habit, which helps to create potentially recurring us-
age information that is statistically localised. However, in spite of their recent
appeal as secondary signatures, only few approaches have employed state dura-
tions to date; prominent examples include the work by Kim et al. [KAL11] and
the work by Johnson and Willsky [JW13].

Judging from what has been described thus far, it is apparent that temporal
features are cost-effective additions to the existing repertoire of standard signa-
tures as they could resolve the feature overlap problem without requiring any
underlying changes to existing instrumentation devices. This means, they are
highly desirable for situations where the reporting rate of measurements is low
(e.g. smart meters) and equipments capable of high sampling rates are not possi-
ble to be installed. Though, as we shall see in Section 2.5, there are complexities
in modelling them, going by existing approaches [KAL11].

Contextual Features

There are many contextual features that could be useful in aiding the process of
disaggregation. Appliances which are in close proximity to one another are more
likely to be used simultaneously to achieve an intended task (e.g. cooking). The
use of air-conditioners is very likely to be correlated with ambient air tempera-
ture, and environmental illumination intensity could determine whether lights
are being turned on or not. All these are useful auxiliary information that could
help to estimate the source of electrical events observed in the aggregate mea-
surements. Therefore, it is natural to see their use in some existing approaches
for load disaggregation.

Berges et al. [BSM10], for example, incorporate light, temperature and audio
information, together with aggregate real power consumption measurements, to
assist the NILM system in distinguishing between appliances which are similar.
They set up a wireless sensor network to collect these environmental values in
an apartment unit, and it was shown that the events detected in both the aux-
iliary data and the electrical data are highly correlated with each other. Like-
wise, Zoha et al. [ZGN+12] followed the same direction but with only one audio
sensor. Although the fusion of different kinds of data in this way is interesting,
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there is some degree of intrusiveness in the approach. Specifically, installation of
additional sensors is needed, with some required to be installed indoors. More-
over, the collection of acoustic information via microphones may not sit well with
privacy-conscious users.

On the other hand, Kim et al. [KAL11] included the usage information be-
tween different appliances as an additional feature. In their investigation, they
noted that the correlation coefficient of the game console with the television is ex-
pectedly high, and the use of this appliance dependency information was shown
to offer promising improvements in disaggregation accuracy over one without.
However, the potential downside to this is the additional overhead in modelling
these features when only a very small group of spatially localised appliances are
present, not to mention the need for more data to avoid the overfitting problem
while the dependencies are learned.

2.5 Model Representations of Appliances

Following the extraction of features of interest, the next task is to construct be-
havioural representations of loads. This involves capturing the linkage between
the extracted features and the operational characteristics of appliances, into math-
ematical models, so that they can be used by algorithms during the disaggrega-
tion stage to infer appliance-level contributions. However, because of the po-
tential limits in representing the actual behaviour of appliances, and because of
possible assumptions made in the representation to ease computational require-
ments, the choice of models used also greatly affects the accuracy of disaggrega-
tion. Therefore, this section describes the state-of-the-art appliance models which
have been employed in existing approaches, in terms of two main categories:
generative models and discriminative models, before discussing how model pa-
rameters are generally learned in practice.

2.5.1 Generative Models

In statistics and machine learning, a generative model includes in its specification
the details by which the observed variable is generated from a hidden variable.
Thus, it describes how, given a specific realisation of the latter, a sample of the
former can be produced. In the case of NILM, the measured aggregate values and
the extracted features are examples of observed variables, while the operational
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states of appliances and the underlying appliance-specific measurements can be
considered hidden variables.

Suppose we have an observed variable y and a hidden variable x. The gen-
erative model can simply be represented by the conditional probability p(y | x).
From Hart’s technical report of his prototype [Har85], it is this form that has been
used. In particular, the pair (∆P,∆Q) is treated as y and a bivariate Gaussian dis-
tribution is employed for characterising each cluster/appliance x in the ∆P -∆Q
plane. Though, one issue with his representation is the use of only two states: ON
and OFF. Provisions for modelling multi-state appliances are not integrated into
his prototype.

Also related is the use of Gaussian mixture model (GMM) by Chou and Chang
[CC13], where the operational states of a group of appliances are represented by
mixtures in the real power domain and each mixture corresponds to a particular
state. While a natural representation, GMM as used in these approaches assumes
that x at different times are independent, whereas in reality, this is not true, given
that x at time t, xt, is very likely to be correlated with xt−1.

For these reasons, representations based on hidden Markov models (HMM)
have been proposed by subsequent work [KJ11, ZBZ11, PGWR12]. Similar to a
GMM, the conditional probability p(y | x) is still maintained, but, now, state tran-
sition information like those described in Section 2.4.3 are incorporated. The out-
come is a probabilistic generative model that expresses the relationship between
a sequence of T hidden states, x1:T , and a sequence of T observed variables, y1:T ,
where the subscript 1:T denotes the time index from 1 to T , i.e. y1:T = (y1, . . . , yT ).

The model assumes that the current state, xt, is only dependent on the previ-
ous state, xt−1, i.e. p(xt | x1:t−1) = p(xt | xt−1), while the observed value at time
t, yt, is considered to be ”emitted” based on the value of the hidden state at the
same time step. As such, the model is characterised by the conditional probability
p(y1:T | x1:T ) whose corresponding joint probability is

p(x1:T , y1:T ) = p(x1:T )p(y1:T | x1:T )

= p(x1)
∏T

r=2 p(xr | xr−1)
∏T

s=1 p(ys | xs),
(2.5)

where p(xτ | xτ−1) is the state transition probability and p(ys | xs) is the emission
probability. The model parameters λ governing an HMM consist of the initial
state probability π, the state transition probability matrix A and the parameters
of the emission probability B. The element of the ith row and the jth column in
matrixA, aij , is the probability of transitioning from state i to state j. On the other
hand, the parameters of the emission probability B depend on the distribution
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of p(ys | xs). If p(ys | xs) is a Gaussian distribution, then B contains the mean
and variance of ys for a given xs. Shown in Figure 2.5 is the dynamic Bayesian
network (DBN) of HMM, with square nodes denoting discrete random variables
and round nodes symbolising continuous random variables. Shaded nodes on
the other hand indicate that the variables are given or observed while arrows
signify the conditional dependence relationship between nodes.

y
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y
t

•   •   •   •
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x1 x2 xt-1 xt

Figure 2.5: Dynamic Bayesian network of HMM.

For modelling appliance behaviour, yt is the power consumption at time t and
xt is the internal state of appliance at time t. Specifically, for the disaggregation
problem, yt and xt could refer to the aggregate power consumption and the sys-
tem state at time t respectively, where the latter is the combined state of a group
of appliances [MPB+16]. That is, in a hypothetical house with two binary-state
appliances, xt = a can refer to a fan being ON and a light being OFF, and xt = b

can signify both being OFF. Though, in this situation, it is preferable to name the
system states by vectors (e.g. xt), denoting the state of each appliance in that
system state.

To that end, factorial hidden Markov model (FHMM), an extension of HMM,
has been employed in the literature [KJ12, EBE15]. It retains the properties of an
ordinary HMM, except that, there are nowK independent chains, each contribut-
ing to the observed aggregate measurements, y1:T . Therefore, like the HMM, the
DBN of FHMM can be visualised as that of Figure 2.6; and the joint probability of
the system states, x1:T , and the observed variables, y1:T , is

p(x1:T , y1:T ) = p(x1)
T∏
r=2

p(xr | xr−1)
T∏
s=1

p(ys | xs), (2.6)

where p(x1) =
∏K

k=1 p(x1,k), p(xr | xr−1) =
∏K

k=1 p(xr,k | xr−1,k) and xt,k refers to
the internal state of appliance k at time t.
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Figure 2.6: Dynamic Bayesian network of FHMM.

Although HMM-based models have been shown to work well in general, the
Markov assumption still limits the potential for disaggregation, since it implicitly
restricts the state durations of appliances to geometric/exponential distributions
[Yu10]. This means, especially for cases where appliances have largely charac-
teristic state durations, useful information which could otherwise help to resolve
feature overlaps is disregarded. In light of this, Kim et al. [KAL11] proposed the
use of a model based on hidden semi-Markov model (HSMM) for representing
durations of the ON state explicitly, coupled with additional means to account for
extra features from auxiliary data and dependencies between appliances. How-
ever, despite being one of the most flexible models proposed to date, their model
is limited to describing binary-state appliances. Therefore, apart from its high
computational requirements, it may have issues with modelling behaviours of
multi-state loads.

In a similar vein, Johnson and Willsky [JW13] introduced the hierarchical
Dirichlet process hidden semi-Markov model (HDP-HSMM) for Bayesian mod-
elling of power consumption values and state durations but without restrictions
to binary-state appliances; and in agreement with Kim at al. [KAL11], it was
shown that HSMM-based approaches do indeed outperform HMM-based mod-
els. Up to this point however, all HSMM-based models used for NILM have been
instances of the explicit-duration formulation. As such, calculations of proba-
bility values at any given time step, needed for real-time inference of states, are
difficult (see Chapter 3 for more details). Also, hard-coded bounds on the dura-
tion space generally have to be made during inferences of hidden states, unless a
specific non-parametric approach is used [DWW12].

Other non-probabilistic generative models which have been used for NILM
are sparse coding [KBN10] and matrix factorisation techniques such as non-
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negative matrix factorisation [FRA13], given their underlying generative inter-
pretation [LS99].

2.5.2 Discriminative Models

Discriminative models form one other type of representation for associating ob-
served variables with hidden variables. However, unlike generative models,
which model the statistical variation of the observed variables with respect to
that of the hidden variables, discriminative models only care about the unidi-
rectional mapping from the former to the latter. In other words, discriminative
modelling involves constructing a function whose inputs are observed variables
and outputs are hidden variables. For example, given an observed variable y and
a hidden variable x, the task could be finding the form of p(x | y) directly based
on a set of training data (e.g. labelled pairs of (x, y)). Therefore, in contrast to
generative models, no assumptions on the distribution of p(y | x) (e.g. Gaussian
distribution) needs to be made [Jor95], as the one-way mapping is learned with-
out having to go through the Bayes relation, p(x | y) = p(y | x)p(x)/p(y). Among
the common realisations used in NILM are artificial neural networks (ANN), sup-
port vector machines (SVM) and k-nearest neighbours (k-NN).

In the work of Srinivasan et al. [SNL06], a vector denoting the harmonics of
the aggregate current signal is the observed variable, while another binary vec-
tor describing the presence of appliances in the aggregate measurements is the
hidden variable. The association between the two variables is then represented
using a 3-layer ANN. Similarly, Ruzzelli et al. [RNSO10]; and Chang and Lee
[CL13] both employed a 3-layer ANN for load identification. However, experi-
ments conducted for each of these approaches are mostly exploratory in nature,
with limited tests conducted to quantify their applicability in real houses with
many appliances. Moreover, the feedforward architecture of the ANN used in
these cases are generally incapable of modelling the temporal dependencies be-
tween extracted features of different times [SNS15], thus preventing the sequen-
tial structure of the electrical data from being used to improve disaggregation.

Also related is the work by Kelly and Knottenbelt [KK15a]. They provided ex-
tensions to previous approaches by adapting deeper variants of ANN for NILM.
Three different deep neural network architectures with up to 8 layers were in-
vestigated, and it was found that the long short-term memory (LSTM) architec-
ture performs the best overall in detecting two-state appliances. Though, it was
noted by the authors that further investigations need to be done to identify why
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the model does not work well with multi-state appliances. Other apparent dis-
advantages are the need for lots of training data to fit models with millions of
parameters and the relatively high computational requirements during the train-
ing stage. The paper reported that, between 1 and 12 hours are required to train
each network on a Graphics Processing Unit (GPU).

SVM has also been considered in NILM. The main idea is to divide the feature
space into regions formed by boundaries, with each region corresponding to a
group of inputs with the same output. Given a set of training data, the role of
training a SVM is then to find these boundaries. Patel et al. [PRK+07] and a
related follow-up work by Froehlich et al. [FLC+09], for example, utilised SVM to
map high-dimensional vectors consisting of frequency components of a transient
voltage noise to contributing appliances. Likewise, a number of other approaches
with spectrum-based signatures have also characterised the behaviour of loads in
this way [LWP12, JLL+12].

Lastly, k-NN, being a non-parametric method, does not build explicit rep-
resentations of features. It simply uses labelled training data as it is, and con-
structs a function that assigns a newly observed variable, ynew, to the class with
the largest membership count amongst k of ynew’s closest points in the training
data. For example, with k = 3, the 3 closest points to ynew (e.g. in terms of the
Euclidean distance) are considered. If 2 of those points belong to the class C1 and
the remaining one point is labelled with class C2, then ynew is assigned to class C1
by virtue of being the majority. Due to its simplicity, 1-NN has been employed
in the work of Gupta et al. [GRP10] and the work of Berges et al. [BGMS10] for
mapping features vectors to the contributing appliances.

Overall, while it has been considered in the field of machine learning that
discriminative models have generally lower error rates than that of generative
models in classification tasks, their performance can be relatively poor when the
size of the training set is small [NJ02]. For this reason and the observation that
datasets for NILM are still limited in quantity at the time of this research, dis-
criminative models are not used as the basis for our proposed model. Though,
as a proposal, its inclusion in the form of a hybrid is easily realisable without
changing the fundamental concept of our approach (see Chapter 6), should there
be more data in the future.
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2.5.3 Learning

One important concern when building appliance models is the way in which their
parameters are learned. For probabilistic generative models, this includes distri-
butional parameters like mean and variance, whereas for SVM, it refers to the
boundaries. Depending on whether or not a labelled dataset is present, the pa-
rameters could either be learned automatically via unsupervised means or man-
ually with the help of labelled data.

The latter, also known as supervised learning, requires appliance-level data
corresponding to a particular setting to be made available. Learning in this way
involves a training phase, whereby model parameters governing the relationship
between the aggregate-level features and the true states of appliances is estab-
lished. This a process which is very much analogous to finding the parameters of
a linear equation given a set of values for the target variable and the independent
variable.

On the other hand, unsupervised learning does not depend on the availabil-
ity of appliance-level data and learning has to be performed through aggregate-
level features only. While this is more practical in that the one-time collection
of appliance-specific data can be avoided, it is a more challenging problem. For
example, unsupervised learning can be an ill-defined problem; besides having to
contend with the issue of feature overlaps, it also has to account for the possibility
that the surface of the objective function over the model space is non-convex with
multiple modes. As such, supervised learning remains one of the more main-
stream approaches for NILM to date. A more concrete description of the different
learning approaches are presented as follows.

Supervised Learning

We have seen the various representations that could be used to model the rela-
tionship between the observed variables and the hidden variables in Section 2.5.1
and Section 2.5.2. To actually learn the specific forms of representations however,
we need a training set with T labelled data points, i.e. {(xt, yt)}Tt=1, of which xt and
yt refer to the tth label and the tth signature value respectively. Especially for dis-
criminative models, this means finding the parameters of a function, f :Y → X ,
such that for all t, xt ∈ X, yt ∈ Y , whose form is governed by the representation
used.

In the case of ANNs, gradient descent via the backpropagation technique is
the standard means of learning the parameters (e.g. the weights of the inter-
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neuron connections), whereas for SVM, the parameters of the boundary equa-
tion are obtained by solving a convex optimisation problem using constrained
quadratic programming. For a more detailed background on these, see [Kot07].

Unsupervised Learning

Within the NILM literature, unsupervised learning has been the primary tool
used for generative models [KAL11, CC13]. Given only the aggregate measure-
ments, i.e. {(yt)Tt=1}, the task is to find the parameters governing the distribution
p(x1:T , y1:T ) even when the labels x1:T are not given.

The standard technique for achieving this is an iterative method, known as
the Expectation-Maximisation (EM) algorithm. Depending on the representations
imposed on y1:T (e.g. GMM vs HMM etc.), the specific formulation of EM can
differ. However, the general description of EM remains the same in each case.
Therefore, EM is described in this manner as part of the brief exposition that
follows. A more complete description of EM can be found in [Bil98].

Suppose that λ denotes the parameters of the distribution, then the natural
goal for estimating λ is to maximise the likelihood function

l(λ | x1:T , y1:T ) = p(x1:T , y1:T | λ) (2.7)

with respect to λ. But, because the labels or hidden states x1:T are also unknown
and the aggregate measurements y1:T are the only constants, it is not possible to
perform the maximisation directly. For that, an initial guess for λ, λ′, has to be
assumed. Then, using λ′ as the starting point, the estimate of λ is iteratively
updated.

There are two steps in one iteration: Expectation (E-step) and Maximisation
(M-step). The E-step involves computing the expectation

Q(λ,λ[i−1]) = E

[
log(p(x1:T , y1:T | λ))

∣∣∣ y1:T ,λ
[i−1]

]
(2.8)

in terms of λ, given the previous iteration’s estimate, λ[i−1]. Then, in the M-step,
the maximisation

λ[i] = arg max
λ

Q(λ,λ[i−1]) (2.9)

is performed. Both the E-step and the M-step are repeated until the likelihood
function corresponding to the estimated λ converges. While EM’s convergence
is guaranteed and its properties are well-known [Wu83], it only performs a local
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search. Therefore, there is no guarantee that the estimate of λ is globally opti-
mum. One of the common workarounds for this is to perform multiple runs of
EM, with randomly sampled initial guess for each round. The final estimate is
then chosen based on the run that gives the largest likelihood value. The descrip-
tion of other workarounds are given in [KX03].

Computationally, the EM algorithm is tractable for less complex models like
GMM and HMM. However, this is not true for the more flexible variants like
FHMM and FHSMM as used in NILM [KAL11]. In particular, the E-step un-
der such models are challenging to compute and thus, sampling methods such
as Gibbs sampling have been employed to approximate the expectation in (2.8)
[GJ97].

One other issue is that, despite being unsupervised, EM still requires the state
space to be known a priori. In the case of FHMM, this means the number of states
for each of the K chains in Figure 2.6 needs to be specified. As this is typically
not known in advance (e.g. the number of states per appliance and the number
of appliances), the use of EM may be potentially limited from a practical point of
view. To that end, Johnson and Willsky [JW13], in their unsupervised approach,
proposed the use of a Bayesian non-parametric method of learning the number
of states inherent in the aggregate measurements.

Semi-supervised Learning

Besides the two groups of learning paradigm mentioned previously, there exists
a relatively new class of approaches which is used in NILM: semi-supervised
learning. Though considered unsupervised from the perspective of end-users,
the work of Parson et al. [PGWR14] actually combines both supervised and un-
supervised learning. The latter comes from the fact that appliance-level data from
a large number of appliances of different brands is utilised to create generic ap-
pliance models. Then, during the roll-out stage, these models are tuned in an
unsupervised manner to house-specific appliance models using Bayesian infer-
ence.

While no labelled data is directly needed as far as the user is concerned, the
creation of generic appliance models still necessitates a deep understanding of
each class of appliances considered. For example, the designer of a particular
NILM implementation might have to perform a large scale collection of data to
investigate generalisable properties.

Moreover, it is not entirely clear whether classes of appliances apart from those
studied by Parson et al. [PGWR14] can be encoded into a general form. Some ap-
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pliances in particular are especially tied to the behaviours or habits of users (e.g.
television). In this regard, it might be non-trivial to deduce a generic property
that could apply to a wide number of cases.

2.6 Disaggregation

Given the appliance models and the learned model parameters, the final task
is to decode the observed aggregate measurements into appliance-wise contri-
butions. Subject to the types of models used, there are a number of ways in
which this could be achieved. In this section, we present two main groups of
approaches generally used in the literature: optimisation methods and machine-
learning techniques as applied to latent variable models.

2.6.1 Optimisation Methods

Load disaggregation is intrinsically a combinatorial optimisation problem; the
aggregate measurements are summations of the appliance-specific measurements
whose exact values are unknown and the size of the solution space grows expo-
nentially in the number of appliances. If we suppose there are T sequential sam-
ples of aggregate values, y1:T , and K appliances, then the problem of estimating
each of the K appliances’ contributions can be formulated as

(ŷ
(1)
1:T , . . . , ŷ

(K)
1:T ) = arg min

(y
(1)
1:T ,...,y

(K)
1:T )

∥∥∥∥∥∥y1:T −
K∑
k=1

y
(k)
1:T

∥∥∥∥∥∥ , (2.10)

where y(k)
1:T refers to the unknown measurements of appliance k and‖·‖ can be any

appropriate norm (e.g. `1 or `2 etc.).

Instances of this in existing approaches are the work of Suzuki et al. [SIS+08]
and more recently, the work of Kong et al. [KDH+16], both of which employed
methods based on integer programming. In acknowledging the computational
intractability inherent to performing optimisation directly, the latter included var-
ious heuristics specific to the problem of disaggregation to reduce time complex-
ity. However, like most methods based on combinatorial optimisation, it has is-
sues in performing well when unknown appliances are present, as it assumes all
K appliances can be modelled and the aggregate values necessarily include the
contributions of only these appliances in question.
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Though, one prominent exception to this is the work by Kolter and Jaakkola
[KJ12]. Being a reformulation of FHMM into an equivalent convex optimisation
problem, their approach specifically included additional variables and regulari-
sation based on compressive sensing to account for the existence of unmodelled
or unknown loads in the aggregate signal. Therefore, it is one of the most notable
approaches in this aspect. That said, because the optimisation procedure is not
an incremental algorithm, disaggregation has to be done in blocks of aggregate
measurements, violating real-time requirements.

2.6.2 Inference of Hidden Variables

In latent variable models like those discussed primarily in Section 2.5.1 and Sec-
tion 2.5.2, the main objective during disaggregation is to infer the hidden vari-
ables x1:T (e.g. the operational states of all appliances) given the observed vari-
ables y1:T (e.g. aggregate measurements/features). For those based on discrim-
inative models, this entails a simple straightforward computation in which the
learned function is used to map any newly observed values to estimates of hid-
den variables, whereas it is a more involved process in the case of generative
models, especially probabilistic ones. As such, we will limit our discussion in
this subsection to the latter.

Assuming that the model parameters λ have been learned, the task of esti-
mating x1:T given y1:T is closely related to the posterior probability of x1:T , i.e.
p(x1:T | y1:T ). For example, a natural thing to do is to find the x1:T that maximises
p(x1:T | y1:T ) or p(x1:T , y1:T ), a procedure also known as maximum a posteriori
probability (MAP) estimation. Thus, the problem can be formally formulated as

x̂1:T = arg max
x1:T

p(x1:T , y1:T ). (2.11)

However, because the maximisation of (2.11) is computationally intractable, it is
not performed directly. Instead, a number of standard methods such as the Viterbi
algorithm, particle filter, Gibbs sampling and heuristic methods are employed for
state inference in NILM. A brief description of these methods are given below.

Viterbi algorithm

The Viterbi algorithm is frequently used as part of state inference under HMM-
based models. For a basic HMM with a single chain x1:T , finding the most likely
state sequence is achieved by using a dynamic programming paradigm and the
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Markov property. This enables the recursive expression

δt(j) =

p(x1 = j)p(y1 | x1 = j), if t = 1

max
i
δt−1(i)p(xt = j | xt−1 = i)p(yt | xt = j), otherwise

(2.12)

to be derived.

The Viterbi algorithm then begins by computing and storing the Viterbi score
δt(j) at each time step t and for each state j, while the selected state for the max-
imisation over i in (2.12) is recorded using a backpointer

ψt(j) = arg max
i

δt−1(i)p(xt = j | xt−1 = i)p(yt | xt = j).

After the last measurement yT is observed, a backtracking procedure is performed
to obtain the estimate x̂1:T such that

x̂T ← arg max
j

δT (j)

x̂t ← ψt+1(j) for t = T − 1 to 1.

Computationally, if there are M possible states that xt can hold, the time com-
plexity of the maximisation operation with the Viterbi algorithm is O(M2T ). Al-
though this is a significant improvement over the direct naive attempt of (2.11)
with O(TM), state inference using the Viterbi algorithm under FHMM or the
FHMM-equivalent HMM is still not computationally tractable in practice [GJ97].
For instance, in the case with K 2-state appliances (i.e. K chains and M = 2), the
time complexity is O(22KT ), that is, the number of required computations grows
exponentially in the number of appliances. Nevertheless, by using various as-
sumptions to sidestep intractability, modifications based on the original Viterbi
algorithm have been utilised in NILM as follows.

In the work of Zeifman and Roth [ZR11b], only a subset of two appliances,
whose distributions of change-in-power value are close with one another, are
considered at a time for detection using the Viterbi algorithm. The assumption
is that, other distributions corresponding to other appliances are sufficiently far
away such that their removal from consideration in the detection of the two ap-
pliances in question is justified. This means, for each partially overlapping sub-
set to be processed independently by the Viterbi algorithm, the number of states
involved is reduced significantly. However, despite being an interesting develop-
ment, the study only accounts for binary-state appliances. Further, the approach
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may have trouble handling observed change-in-power values which are actually
caused by any of the two appliances but fall beyond the bounds for which the
likelihoods under the corresponding distributions are insignificant. This is on
top of complications in dealing with change-in-power values attributable to two
or more appliances.

Also related is the more recent work by Makonin et al. [MPB+16]. In their
approach, the naturally sparse state transition matrix of HMM, when used in
NILM, is exploited to avoid unnecessary computations and to reduce the memory
cost of the Viterbi algorithm. While it has been demonstrated by the authors that
the developed technique is able perform really well, there are several concerns.
Firstly, the modified Viterbi algorithm is no longer in essence a Viterbi algorithm,
since it does not estimate the most likely state sequence. Rather, for every pair
of observed values (i.e. yt−1 and yt), it infers xt as x̂t = arg maxj δt(j). As this is
a greedy approach, it may prematurely discard correct solutions which have low
Viterbi scores given only measurements observed thus far but have high Viterbi
scores in light of future observations. Therefore, the state sequence inferred in this
way might be suboptimal. Secondly, the problem of performing disaggregation
in the presence of unmodelled loads is not specifically addressed. As such, the
introduction of new appliances via new purchases or guest visits may negatively
affect disaggregation accuracy.

Particle filter

The particle filter (PF), also known as Sequential Monte Carlo (SMC), offers an al-
ternative approach to estimating the underlying state sequence by allowing sam-
ples of state sequences to be obtained via a recursive sampling process [DJ08].
In this way, the posterior distribution p(x1:T | y1:T ) as used in Bayesian inference
can be approximated numerically in real-time even in cases where the state xt is
high-dimensional and the posterior distribution cannot be expressed in tractable
form.

The main components of particle filters are a proposal distribution q(x1:T ) and
a weight function w(x1:T ). Suppose that the posterior distribution p(x1:T | y1:T )

is desired but cannot be expressed in exact form, and suppose that the direct
sampling of x1:T from p(x1:T | y1:T ) is not possible. If we can define an alternative
distribution (i.e. proposal distribution) that we can easily sample from such that
q(x1:T ) > 0 when p(x1:T | y1:T ) > 0 for all x1:T , then the posterior distribution can
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be approximated by first drawing Np samples from q(x1:T ) before evaluating

w(x
(i)
1:T ) =

p(x
(i)
1:T , y1:T )

q(x
(i)
1:T )

(2.13)

p̂(x1:T | y1:T ) =

Np∑
i=1

w(x
(i)
1:T )δ

x1:T ,x
(i)
1:T
, (2.14)

where p̂(x1:T | y1:T ) is the approximated version of p(x1:T | y1:T ), x(i)
1:T is the ith

sample drawn from q(x1:T ) and δ is the Kronecker delta function.

However, as particle filters are described as a sequential process in which Np

samples are not drawn as blocks of T states, but instead, sampled incrementally
at each time step t, a recursive form for q(x1:t) and w(x1:t) have to be defined. In
general, both are given as

q(x1:t) = q(x1:t−1)q(xt | x1:t−1)

= q(x1)
t∏

τ=2

q(xτ | x1:τ−1)
(2.15)

w(x1:t) = w(x1:t−1)α(x1:t)

= w(x1)
t∏

τ=2

α(x1:τ ),
(2.16)

where q(xt | x1:t−1) and α(x1:t) refer to the incremental proposal distribution and
the incremental weight function respectively.

With that, the ith sample up to time t, x(i)
1:t, can be obtained by drawing x

(i)
t

from q(xt | x1:t−1), having already drawn x
(i)
1:t−1 in previous time steps. In the

same way, weights of the previous time steps are used to calculate the current
weights incrementally. Lastly, to mitigate the sample degeneracy problem inher-
ent in the incremental sampling process, whereby the weights of samples reduced
to significantly low values after a number of time steps, a resampling procedure
is performed. This involves drawing Np new particles with replacement from
the pool of Np particles (i.e. {x(i)

1:t}
Np
i=1), with the probability of selecting each ith

particle being the normalised weight function

w̃(x
(i)
1:t) =

w(x
(i)
1:t)∑Np

j=1 w(x
(j)
1:t)

, (2.17)
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whenever the effective sample size (ESS)

ESS =

 Np∑
i=1

w(x1:t)
2

−1

(2.18)

falls below a predefined threshold. Theoretically, the resampled particles should
reflect the posterior distribution p(x1:t | y1:t).

In NILM, particle filters have been predominantly used by Egarter et al.
[EBE13, EBE15] to infer contributions of appliance power consumption under
FHMM. They showed that appliance models would not need to be learned pre-
cisely in order to disaggregate properly. Though, as admitted by the authors,
the approach is not able to perform well when appliances with similar power
consumption are present. Furthermore, underlying the resampling step of parti-
cle filters is the issue of low particle diversity, as particles with high weights are
drawn more often, potentially taking more spots in the pool of Np resampled par-
ticles at the expense of particles with low weights. In the extreme case, these par-
ticles would all be represented by only a single realisation of x1:t. In this regard,
the issue is especially wasteful for NILM, considering that an observed aggregate
signal could be explained by many different combinations of component signals,
and the loss in diversity would prematurely lock-in estimates of state sequence
before more future measurements are observed. Even if on-demand resampling
based on the aforementioned ESS is employed, there is no guarantee that unique-
ness amongst resampled particles are maintained. Not to mention, it is difficult
to ascertain the ESS threshold to use in advance.

Gibbs sampling and heuristic methods

Similar to particle filters, the Gibbs sampler is a Monte Carlo method for approxi-
mating multivariate distributions, but samples are instead drawn iteratively from
a Markov Chain, which composed of conditional probabilities of the multivariate
random variables in question, and whose equilibrium distribution mirrors that of
the target distribution. Examples as used in NILM are the earlier work of Kolter
and Johnson [KJ11] for performing inference under FHMM, and the work of John-
son and Willsky [JW13] for jointly inferring the states of appliances and the pa-
rameters of their proposed HDP-HSMM model mentioned in an earlier section.

Apart from sampling methods, heuristics for solving optimisation problems
have also been used. In particular, Kim et al. [KAL11] utilised simulated anneal-
ing (SA) for performing maximum likelihood estimation on the state sequence,
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given that the exact state inference using the Viterbi algorithm under his pro-
posed HSMM-based model is not computationally tractable.

While the contribution of the approaches mentioned here is that they use more
complex appliance models, the use of both Gibbs sampling and SA means they
are only inherently suited for batch processing; blocks of measurements have to
be observed (e.g. a day’s worth) before retrospective inference of states is per-
formed. As such, these techniques do not lend themselves well to meeting one of
our research objectives, that is, the real-time disaggregation of power consump-
tion measurements.

2.7 Limitations: A Summary

We have provided a detailed overview of the various aspects of NILM methods
as used in the literature in previous sections, while noting the drawbacks and
benefits of each category. In this section, we summarise the limitations to give a
clearer perspective on unsolved problems in the field to motivate the need for our
proposed approach as described in the chapters that follow.

Firstly, the common assumption of one-at-a-time (i.e. only one device per tran-
sition) as alluded in Section 2.3.2 does not normally hold for low sampling rates.
While it is a reasonable assumption in reducing computational complexity in high
sampling rates application, restricting one appliance to change state at any given
time might cause the algorithm to be less robust, on top of being more likely to
induce errors in low sampling rate scenarios. The observation that several recent
works [DROS13, KJ12, RCG12, SY12, KZZS13] still employed this assumption
means that more attention needs to be devoted for relaxing this constraint with-
out affecting computational tractability.

Secondly, as far as generative models are concerned, the use of factorial hid-
den Markov models (FHMM) in few of the recent, prominent works [KJ12, EBE15,
MPB+16] implicitly assumes that the state duration is geometrically distributed.
Essentially, this Markov property means the probability of transitioning to a new
state is only dependent on the previous state, regardless of the actual duration in
which a given appliance has been in its previous state for. Even without account-
ing for the recurring habits of household occupants, the assumption is limiting as
a number of common appliances (e.g. refrigerators, water pump etc.) are cyclic in
nature. Moreover, the assumption prevents useful patterns expressible via state
duration information to be leveraged, severely restricting the potential of resolv-
ing overlaps in feature space.
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Thirdly, although state-of-the-art methods utilising state durations have been
explored in the form of hidden semi-Markov models (HSMM) to address the
second limitation [KAL11, JW13, GWK15], the variant used does not inherently
allow real-time processing. For instance, the duration random variable as ex-
pressed in these works require blocks of data to be obtained before the probability
can be computed, whereas in a real-time system, it is expected that calculations
could be updated incrementally as new measurements are observed. In addition,
for state inference under these models, hard-coded bounds on the duration space
have to be made typically [DWW12], thus reducing robustness.

Last but not least, it is widely believed that all appliances in a house can be
accounted for during the training/learning stage. Methods for dealing with un-
known appliances have been few and far between. A thorough search in the liter-
ature only yielded one work by Kolter and Jaakkola [KJ12], and another more re-
cently by Tang et al. [TWLT16], whereby a robust mixture residual term has been
introduced to explicitly take on contributions from unknown appliances. The
lack of investigation in this aspect largely inhibits the wide adoption of NILM
in the real world. Furthermore, the two approaches mentioned are inherently
non-real-time, as they perform disaggregation in batches.

2.8 Public Datasets

Aside from the direct problem of disaggregation, one of the main issues in the
literature is the use of non-standard private datasets for the evaluation of NILM
approaches. Not only does this prevent claimed disaggregation accuracies in past
papers to be validated, it also makes disaggregation accuracies not comparable
across a broad set of work. It is only until recently that the uptake of common
datasets increases. While the number of public datasets is still relatively limited,
it is gradually growing to facilitate more research in load disaggregation. In this
section, a brief overview of the common public datasets is provided, in addition
to remarks on their relevance to our research scope.

2.8.1 Reference Energy Disaggregation Dataset (REDD)

The REDD dataset is the first public dataset specially catering to the develop-
ment of NILM algorithms. Since its release by Kolter and Johnson [KJ11] in 2011,
the number of proposed NILM algorithms tested against REDD has grown. Indi-
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rectly, this marks the start of the use of common datasets in the literature as before
that, NILM algorithms have only been validated against private datasets.

The dataset consists of appliance-level data and aggregate-level measure-
ments in the form of real power quantities and apparent power quantities3 re-
spectively. The data are collected from 6 houses in the Greater Boston area in
the United States, with monitoring durations up to nearly 2 months. Also made
available are voltage waveforms and current waveforms sampled with a rate of
16.5kHz from the main metering point of two houses.

The REDD dataset is considered as part of our evaluation as it is widely re-
garded by the NILM community as the standard dataset for benchmarking NILM
algorithms. Apart from that, it is also relevant for testing our proposed method
due to its inclusion of ground truth appliance power consumption data with sam-
pling intervals in the order of seconds. The voltage waveforms and current wave-
forms in the dataset are however not used, given our research focus on low fre-
quency data obtainable from typical smart meters.

2.8.2 Building-Level Fully-Labeled Dataset for Electricity Disag-

gregation (BLUED)

After Kolter and Johnson started the trend of publishing datasets for NILM, An-
derson et al. [AOB+12] released the BLUED dataset in 2012, with specific empha-
sis on motivating research of event-based approaches, whereby detectable events
in the aggregate signal are individually classified. To that end, they made avail-
able appliance-level ground truth data in the form of events corresponding to the
actual state transition of appliances in a single family house in Pittsburgh, United
States. Accompanying that data is also the aggregate-level voltage and current
measurements sampled at a rate of 12kHz. Duration-wise, the monitoring spans
a week.

While the dataset might be useful in some aspects, its use is not considered
in our evaluation primarily because of the lack of appliance-level power con-
sumption data. Moreover, its emphasis on validating event-based approaches
is orthogonal with our research scope and modelling approach in Chapter 3.

3Although it was not mentioned by Kolter and Johnson [KJ11], there is a consensus that
the aggregate-level measurements are actually apparent power quantities due to the scaling of
the aggregate-level measurements relative to the what was observed in the appliance-level data
[BDS13, Zei12].
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2.8.3 Almanac of Minutely Power Dataset (AMPds)

Makonin et al. [MPB+13] follow suit with the publication of the AMPds dataset
in 2013. The dataset consists of appliance-level and aggregate-level real power
measurements, reactive power measurements, root mean square (RMS) current
and voltage data, on top of aggregate-level gas flow measurements and water
flow measurements, each obtained at every minute. Data collection is performed
in a house in the Greater Vancouver region of British Columbia, Canada for a
duration of one year. The availability of non-electrical data is envisioned to be
useful for NILM algorithms that employ external features.

As only one house is instrumented, the dataset is not chosen for our evalua-
tion. Though, for future work, it will be useful for modelling seasonal variation
in appliance behaviour given the long monitoring duration of one year.

2.8.4 UK Domestic Appliance-Level Electricity (UK-DALE)

The UK-DALE dataset was released by Kelly and Knottenbelt [KK15b] in 2015. It
is the most comprehensive dataset to date, comprising of data measured from 5
houses in the United Kingdom, with monitoring periods of up to 2 years and
54 channels’ worth of appliance-level data for one of the houses. Appliance-
level measurements and aggregate-level measurements are made available in real
power and apparent power quantities obtained at sampling intervals in the order
of seconds, besides the aggregate-level voltage and current waveforms, each sam-
pled at a rate of 16kHz.

The breadth and depth of the data collected are certainly beneficial for a more
detailed appliance behavioural analysis and modelling. Unfortunately, at the
time of the development of our proposed method, the dataset did not exist. There-
fore, the data can only be considered as part of any future work for investigating
the aforementioned seasonal variation and the enlarged scale of appliance classes.

2.9 Research Scope

With this background, it is now possible to elaborate on the research goals listed
in Chapter 1.

First, the focus is solely on disaggregating aggregate-level real power mea-
surements with sampling intervals in the order of seconds up to a few minutes.
It is assumed that no other power quantities like reactive power is available. This
choice is driven by the limited functionality of existing smart meters [NSM11],
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and we believe that for a wide-scale deployment of NILM, existing infrastructure
should be reused.

In addition, the research is not concern about the way in which the model pa-
rameters are obtained. This means that whether or not unsupervised learning is
used is immaterial as long as the model parameters can be learned. The main
emphasis is in the structure of the proposed model and its ability to address the
limitations outlined in Section 2.7. However, we note that our proposed approach
is agnostic to the learning paradigm. Should there be a need to obtain parame-
ters in an unsupervised manner, existing approaches at tangent to our research
emphases and which focus on the training aspect of NILM such as the work by
Parson et al. [PGWR14] can be integrated. Though, such integration work is
beyond the scope of this thesis.

Further, while the difficulty of detecting continuously-variable loads has been
noted in the previous sections, and solutions have been limited thus far, these
loads are not considered. Two assumptions are made in this regard. First,
continuously-variable loads are uncommon in residential settings. Second, as
described in an earlier section, Laughman et al. [LKC+03] specifically men-
tioned that their method could be used to remove continuously-variable compo-
nents, enabling the remaining appliances to be detected in a conventional fashion.
Therefore, in the event that such loads are present, it is assumed that future in-
tegration of the work by Laughman et al. [LKC+03] and the approach presented
in this work would allow a more diverse set of appliances to be detected. Once
again, the integration and the associated development are outside the scope of
this thesis, as the main objective of this research lies in rectifying the issues stipu-
lated in Section 2.7.
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CHAPTER THREE

MODELLING OF APPLIANCE

BEHAVIOUR

In this chapter, an appliance model is formulated. With respect to the other es-
tablished models used in the state-of-the-art, we define the main problem state-
ment before outlining a set of requirements for the desired appliance model. It
is with consideration of the stipulated requirements that the proposed model is
devised. The outcome of this is the factorial variable transition hidden Markov
model (FVTHMM), a factorial extension made for the model presented by [Vas91]
and [RW92] in the field of speech modelling. Like the commonly-used explicit-
duration hidden Markov model (EDHMM) [KAL11] [GWK15], FVTHMM is able
to incorporate general state duration distributions. However, the differences in
formulation inherent to FVTHMM allows a more natural integration with real-
time and sequential processing requirements during the inference of appliances’
states. This is achieved by describing the state sojourn time in terms of its hazard
function. Finally, we present the results of modelling using the proposed model
and how it could lead to better discernibility between appliances with similar
power consumption. Part of this chapter has been published in a journal paper
[WcD14].

3.1 Introduction

As noted in Chapter 2, disaggregation is a more challenging task when only ag-
gregate real power data of low sampling rate measurements is available; the num-
ber of different electrical features that could be extracted to help distinguish be-
tween appliances is more limited than in the case of high sampling rate voltage
and current waveform data. Therefore, better appliance models with less restric-
tive assumptions are required to compensate for this limitation.
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For example, models characterising the behaviour of appliances should not
only describe the relationship between the operational states of loads and the
power consumption, but also incorporate correlation information which are ap-
parent in the measurements at different times. While this may necessarily com-
plicate the modelling process and increase the computational complexity of the
subsequent disaggregation task, their inclusion is well-justified, given the need
to improve separation between similar appliances and the lack of electrical fea-
tures. Furthermore, the use of additional information in this way is appealing as
no extra measurement device (e.g. light and temperature sensors etc.) is needed.

For this reason, the inclusion of temporal correlations has been popular
amongst existing approaches that utilised only low sampling rate electrical mea-
surements. A prime example is the use of state transition information in the form
of hidden Markov models (HMM), of which instances have remained one of the
better-performing methods in recent years. Yet, there is still room for improve-
ments, considering the number of issues already outlined in Chapter 2. Particu-
larly, the notion of states persisting over a variable period of time is not explicitly
taken into account. Instead, this variation in state duration is implicitly restricted
to be a geometric distribution, even though it may not be the case in reality. Such
an example can be seen in Figure 3.1, where it is shown that the shape of the em-
pirical probability density function associated with the ON state of a refrigerator
is clearly different than that of the geometric distribution. The lack of expres-
sive power in this regard limits its modelling capacity and prevents appliances
with well-known cyclical usage patterns from being represented accurately. Ad-
ditionally, with HMM, appliances with different state duration distribution could
be modelled to have similar Markov state transition probabilities. This brings to
light the issue of disambiguating between appliances that are alike with respect
to first order statistics, despite the actual behavioural differences.

The solution to this, as has been explored in the literature, is the use of hid-
den semi-Markov models (HSMM). Durations of states, also known as sojourn
time, are now allowed to take on arbitrary distributions while maintaining some
aspects of Markov processes. As such, appliances with different characteristics
could be represented more precisely to enable overlaps in power consumption
features to be resolved. Following the same direction, we have adopted HSMM
for NILM. However, unlike previous approaches which formulate the estimation
as an off-line problem aiming to maximise the sequence likelihood that consid-
ers the probability density function of the observed sojourn times, the formula-
tion presented herein allows dynamic computation of time-varying state transition
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Figure 3.1: Differences between the actual duration distribution and the version implied
through the use of HMM. Left: The empirical probability density function (pdf) associ-
ated with the ON state of a refrigerator. It has a mean ON duration of 19 minutes. Right:
The corresponding geometric distribution with the same mean ON duration. Its shape
clearly deviates from that of the actual duration distribution shown on the left.

probabilities at each time step conditioned on not just the previous state but also
its dwell time, thereby facilitating on-line estimation of states. Moreover, state
inference under the proposed model does not require explicit search over all pos-
sible state durations. This allows computation to be done efficiently, as we shall
see in Chapter 4.

In this chapter, the following contributions are discussed:

• An alternative instance of HSMM for NILM with time-varying duration-
dependent state transition probabilities.

• The use of a robust version of the Expectation-Maximisation (EM) algo-
rithm for learning the associations between the states of appliances and
their power consumption in the presence of outlying values originating
from transients. It is often not mentioned in the literature how these val-
ues are being dealt with.

• The automatic determination of the number of mixtures in the state du-
ration distribution using an information criterion known as the Minimum
Message Length (MML) principle.

3.2 Related Work

The existing use of state duration for load disaggregation is limited. The main
work is that of Kim et al. [KAL11] and of Johnson and Willsky [JW13], which have
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both demonstrated that the explicit modelling of state duration using HSMM
does indeed help to improve disaggregation accuracy.

Suppose that the state of appliance k at time t is xt,k and suppose that xt =

(x1,1, . . . , xt,K) denotes the system state composed of K appliances. Given a se-
quence of T system states x1:T and a sequence of T aggregate measurements y1:T ,
the joint probability characterising the important parts of the model described in
these approaches is

p(x1:T , y1:T ) =
T∏
t=1

p(yt | xt)
K∏
k=1

p(x1,k)p(d1,k | x1,k)

×
∏

r:xr,k 6=xr−1,k

p(xr,k | xr−1,k)p(dr,k | xr,k)

,
(3.1)

where p(dr,k | xr,k) is the probability that, for dr,k consecutive time steps from
r, the state remains unchanged, i.e. xτ,k = xr,k for τ = r + 1, . . . , dr,k − 1 and
xr,k 6= xr+dr,k,k.

Intuitively, (3.1) can be understood as a process in which x1:T and y1:T are
generated. At the start, and for each k, x1,k is drawn from the distribution p(x1,k).
Then, subject to the realisation of x1,k, d1,k is sampled from p(d1,k | x1,k) so that
xτ,k = x1,k for τ = 2, . . . , d1,k − 1. After these d1,k states are generated, a new state
of appliance k at time r is drawn from p(xr,t | xr,t−1), with the constraint that a
different state than before has to be chosen, i.e. xr,k 6= xr,k−1. Subsequently, like
before, the duration corresponding to xr,k is drawn from p(dr,k | xr,k), resulting in
xτ,k = xr,k for τ = r + 1, . . . , r + dr,k − 1. In the end, having generated a sequence
of T states for each k, T observations are each sampled independently according
to p(yt | xt).

The formulation of the aforementioned generative process is a specific
instance of HSMM, known as the explicit duration hidden Markov model
(EDHMM) [Yu10]. While its description is relatively simple to understand, the
direct usage of the state duration distribution p(dr,k | xr,k) in (3.1) does not easily
allow real-time inference of states. For example, the maximisation of (3.1) with
respect to x1:T using the Viterbi algorithm not only has to be done over the set
of possible states at each time step, but also over a potentially large number of
durations. This is on top of the typically required hard-coded bounds on the
possible durations to be explored so that memory cost is bounded. Unless meth-
ods borrowed from the field of Bayesian non-parametrics are used [DWW12],
setting bounds in advance could result in wrong inferences, besides being not ro-
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bust against unforeseen situations. Overall, these drawbacks prevent the use of
EDHMM in meeting the research objectives stipulated in Chapter 1.

To that end, an alternative formulation of HSMM with time-varying duration-
dependent state transition probabilities is proposed for NILM. Details pertaining
to it are described in the next section.

3.3 Time-Varying State Transition Probabilities

Independently developed as part of this research and later found to have been
used in the field of acoustic speech modelling [Vas91, RW92], the alternative for-
mulation of HSMM, also known as the variable transition hidden Markov model
(VTHMM) [Yu10], sets itself apart from EDHMM with the inclusion of duration-
dependent state transition probabilities, i.e. p(xt,k | xt−1,k, ct−1,k) where ct−1,k de-
notes the number of time steps spent in state xt−1,k. In other words, the state
transition probability is no longer static as is the case with HMM and EDHMM.
Instead, it is now a function of ct−1,k. Although it was noted by Johnson [Joh05]
that both EDHMM and VTHMM are equivalent in modelling a given y1:T , the
process of performing state inference under both models is not exactly the same
[Yu10].

3.3.1 Factorial Variable Transition HMM

Here, we propose a factorial variant of VTHMM, factorial variable transition
HMM (FVTHMM1), for load disaggregation. With K independent chains (e.g.
K appliances), the model is characterised by the joint probability

p(x1:T , y1:T , c1:T ) = p(x1)p(c1)
T∏
t=1

p(yt | xt)

×
T∏
r=2

p(xr | xr−1, cr−1)p(ct | xr, cr−1,xr−1)

(3.2)

where xt ∈ Z1×K refers to the system state at time t as before, i.e. xt =

(xt,1, . . . , xt,K); yt ∈ R is the aggregate real power as measured at time t and
ct ∈ Z1×K is a vector of counters corresponding to the K appliances, i.e. ct =

(ct,1, . . . , ct,K). Like any factorial model, due to the independence relationship be-
tween chains, the factors p(x1), p(c1), p(xt | xt−1, ct−1) and p(ct | xt, ct−1,xt−1) are

1To ease readability, FVTHMM can be pronounced as ”fathom”.
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p(x1) =
K∏
k=1

p(x1,k) (3.3)

p(c1) =
K∏
k=1

p(c1,k) (3.4)

p(xt | xt−1, ct−1) =
K∏
k=1

p(xt,k | xt−1,k, ct−1,k) (3.5)

p(ct | xt, ct−1,xt−1) =
K∏
k=1

p(ct,k | xt,k, ct−1,k, xt−1,k). (3.6)

respectively. The joint probability in (3.2) can also be expressed in a recursive
form,

p(x1:t, y1:t, c1:t) = p(x1:t−1, y1:t−1, c1:t−1)p(yt | xt)

× p(xt | xt−1, ct−1)p(ct | xt, ct−1,xt−1),
(3.7)

to enable the incremental computation of probabilities. This will be used in the
proposed state inference method in Chapter 4.

To understand how the FVTHMM works as a generative model, consider its
dynamic Bayesian network (DBN) representation as shown in Figure 3.2. For each
of the K chains, and for each t, the realisation of xt,k is conditionally dependent
on the previous state xt−1,k and its dwell time ct−1,k. This relationship is

p(xt,k | xt−1,k, ct−1,k) =

hxt−1,k
(ct−1,k)ãxt−1,k,xt,k , if xt,k 6= xt−1,k

1− hxt−1,k
(ct−1,k), otherwise,

(3.8)

where

• hxt−1,k
(ct−1,k) is the hazard function from the field of survival analysis

[Jen05], which equivalently refers to the probability of exiting the state
xt−1,k, having already spent ct−1,k time steps in that state, i.e.

hxt−1,k
(ct−1,k) =

p(d = ct−1,k | xt−1,k)

p(d ≥ ct−1,k | xt−1,k)
; (3.9)

• p(d | xt−1,k) is the duration probability of the state xt−1,k;

• for xt−1,k = i and xt,k = j, ãi,j is the probability of transitioning from state i
to state j conditioned on i being different than j. As such, if appliance k has
Mk states, ãi,j can be seen as an element in the ith row and jth column of
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Figure 3.2: Dynamic Bayesian network of the FVTHMM.

a state transition matrix Ãk ∈ [0, 1]Mk×Mk such that
∑

j ãi,j = 1 and ãi,i = 0.
Note that Ãk can be derived from the state transition matrixAk ∈ [0, 1]Mk×Mk

of an ordinary discrete time HMM, as for any i 6= j,

ãi,j =
ai,j∑
j 6=i ai,j

, (3.10)

where ai,j is the corresponding element in matrix Ak.

The counter ct,k, on the other hand, takes on the value of ct−1,k + 1 if
xt,k = xt−1,k. Otherwise, it resets to 1. This means, the probability p(ct,k |
xt,k, ct−1,k, xt−1,k) is a sparse distribution since other counter values are not pos-
sible by construction. Therefore, the conditional dependence of ct,k on xt,k, ct−1,k

and xt−1,k can be formally presented as

p(ct,k | xt,k, ct−1,k, xt−1,k) =

δct,k,ct−1,k+1, if xt−1,k = xt,k

δct,k,1, otherwise,
(3.11)

where δ denotes the Kronecker delta function,

δi,j =

1, if i = j

0, otherwise.
(3.12)
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We assume that the counter starts at 1 when the initial state is entered, i.e. p(c1,k =

1) = 1 for all k.

The relationship between the aggregate power consumption at time t, yt, and
the system state xt is same as that of the factorial EDHMM (FEDHMM) and
FHMM, as the observed measurement at the mains is clearly dependent on the
internal state of each of the K appliances in a residential unit, i.e. p(yt | xt) =

p(yt | xt,1, . . . , xt,K).

3.3.2 FVTHMM as Applied to NILM

Modelling of Power Consumption

In NILM, the fundamental equation relating the aggregate power consumption,
yt, to the individual appliance power consumption, yt,k, is

yt =
K∑
k=1

yt,k + rt, (3.13)

where rt is a general noise term that might include noise induced by measurement
errors or contributions from appliances for which we are unaware. Though, for
now, we will assume that rt is 0, implying we have knowledge of all appliances
in a residential unit. Cases, where some appliances are unknown, are addressed
in Chapter 5.

On its own, the power consumption of appliance k at time t, yt,k, is naturally
a function of its operational state, xt,k, i.e. fk(xt,k). It also has a noise term that is
dependent on xt,k, i.e. nk(xt,k). For example, a three-state fan might have larger
fluctuations about its nominal power consumption when it is operating in the
highest speed, while the fluctuations might be lower when a medium speed is
chosen. Taken together, the power consumption of appliance k can be expressed
as

yt,k = fk(xt,k) + nk(xt,k). (3.14)

The value of fk(xt,k) is constant for a given xt,k and it is deterministic, whereas
the state-dependent noise of appliance k, nk(xt,k), is a random variable.

It is usually not the case that nk(xt,k) is independent and identically dis-
tributed (i.i.d.) for a fixed xt,k. Refrigerators, for instance, usually have a decaying
power consumption from the moment they enter their ON cycle (see Figure 3.3).
Therefore, for a given xt,k, it may be more appropriate to model their power con-
sumption as a non-stationary process. Though, for the purpose of this chapter, we
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Figure 3.3: Multiple ON cycles of a refrigerator. The decay in power consumption from
the onset of each cycle is apparent. The data is from house 1 of the REDD dataset.

will follow previous work [KAL11, KJ12] and assume that the state-dependent
noise for each appliance is i.i.d.. Deviation from this assumption is explored in
Section 4.5 of Chapter 4. Additionally, nk(xt,k) is also assumed to have a Gaussian
distribution, like in existing approaches [KAL11, KJ12, PGWR14]. This means,

yt,k | xt,k ∼ N (µxt,k , σ
2
xt,k

), (3.15)

where fk(xt,k) = µxt,k is the mean of power consumption associated with state xt,k
of appliance k and σ2

xt,k
is the corresponding variance.

However, because yt,k cannot be observed in NILM, we are only interested in
the relationship between the aggregate power consumption yt and the internal
state of each appliance. For that, and using the fact that the summation of K
independent Gaussian distributed random variables is also a Gaussian random
variable, we arrive at

yt | xt ∼ N

 K∑
k=1

µxt,k ,
K∑
k=1

σ2
xt,k

 , (3.16)

which is used as the emission probability, p(yt | xt), of FVTHMM in (3.2).

Modelling of Appliance State Sojourn Time

The state duration probability, as used in the hazard function calculation in (3.9),
is represented using a mixture of Gamma distributions. The choice of using a
mixture instead of a single Gamma distribution is driven by the observation that
some appliances are associated with both long periods without use and short-
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term OFF periods that are embedded within an operating cycle. For example,
Figure 3.4a shows that there are multiple short OFF periods within an operating
cycle of a dishwasher, while Figure 3.4b illustrates the longer inter-usage period
between operating cycles. Overall, this operational behaviour is apparent if we
consider the duration distribution of the OFF state, as shown in Figure 3.4c; the
large peak at around 0 is attributed to the short OFF periods and the cluster cen-
tring at 1 suggests that the dishwasher is normally being operated once every
day.

As a distinction is needed between the two (or possibly more) scenarios, a
mixture of distributions is appropriate; one mixture component is for modelling
the long-term OFF periods while another is for representing the short-term OFF
periods. Thus, for the duration d of a given state xt,k = i of a certain appliance k,

(a) Power consumption of a dishwasher in one operating cycle.

(b) Zoom-out version of Figure 3.4a show-
ing the actual inter-usage period.

(c) Duration distribution of the dish-
washer’s OFF state

Figure 3.4: Operational behaviour of a dishwasher. The power consumption data is from
house 1 of the REDD dataset [KJ11].
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a mixture of Li Gamma distributions is

p(d | xt,k = i) =

Li∑
l=1

ml,ig(d;αl,i, βl,i), (3.17)

where
g(d;αl,i, βl,i) =

dαl,i exp(−d/βl,i)
β
αl,i
l,i Γ(αl,i)

(3.18)

is the probability density function (pdf) of the lth component Gamma distribu-
tion, parametrised by the shape parameter αl,i and the scale parameter βl,i; ml,i is
the mixing coefficient of the lth component, with the constraint that

∑Li
l=1ml,i = 1

and ∀l, 0 ≤ ml,i ≤ 1; and Γ(·) is the Gamma function.

3.4 Learning of Model Parameters

Before describing the approach used for learning model parameters, let us first
define some notations to simplify the discussion that follows. Firstly, for appli-
ance k with a set of disjoint statesMk whose cardinality is Mk = |Mk|, we shall
denote the mean and variance of the power consumption of state i by µi and σ2

i .
Accordingly, a collection of such means and variances for all Mk states of appli-
ance k is referred to as (µk,σ

2
k) = [(µi, σ

2
i )]i∈Mk

. Secondly, for the state transition
model, the Markov state transition matrix associated with appliance k will be
designated as Ak, while Ãk is the corresponding state transition matrix with ze-
roed self-transition probabilities. Also relevant is the initial probability of being
in state i, πi = p(x1,k = i), with πk = [πi]i∈Mk

. Thirdly, a mixture of Li Gamma
distributions for modelling the durations of state i of appliance k has the param-
eters Θi = [(ml,i, αl,i, βl,i)]

Li
l=1, where ml,i, αl,i and βl,i are the mixture coefficient,

the shape parameter and scale parameter of the lth component respectively. For
appliance k, we then have (mk,αk,βk) = [Θi]i∈Mk

. Taken together, the complete
model parameters of aK-chain factorial VTHMM can be represented by the tuple
λ = (λe,λd), with λe being the tuple comprising of the parameters related to the
emission probability, and λd being that of the state transition probability and the
state transition model, i.e. λe = [(µk,σ

2
k)]

K
k=1 and λd = [(πk, Ak,mk,αk,βk)]

K
k=1.

These parameters can be learned using the Expectation-Maximisation (EM)
algorithm briefly described in Section 2.5.3, when only a sequence of T aggre-
gate measurements y1:T is available and both the corresponding system states
x1:T and the appliance-level contributions y1:T,k are unknown. However, this con-
stitutes an fully-unsupervised learning problem and it is beyond the scope of this
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research. Instead, we will consider the case where training data in the form of
y1:T,k is available but the states of appliance k, x1:T,k, are unknown. While this is
a less elegant approach, we again note that the main emphasis of this thesis is
in the efficient and robust inference of states under a more complex model with
duration modelling. To that end, the formulation of the EM algorithm for fully
unsupervised learning under FVTHMM is reserved for future work.

In this section, a supervised learning approach used for finding λ is described,
whereby we first detail the technique used for estimating λe in the presence of
outlying values caused by transients, before discussing the method of inferring
λd. Henceforth, we shall also refer to λe and λd as the parameters for the emission
model and the temporal model respectively, given that the former is concerned
with the emission of an observed value for a given state while the latter governs
the dynamics of the states with respect to time.

3.4.1 Parameter Estimation for the Emission Model

For the purpose of estimating λe, the power consumption of appliance k is fitted
using a mixture of t-distributions, with each mixture component corresponding
to a state. This choice was made, as it was found that the learning of parame-
ters based on a mixture of Gaussian distributions is sensitive to outlying values
of power consumption, which originate often from transients. Moreover, it has
been mentioned by Lucas [Luc97] and Peel and McLachlan [PM00] that the use of
t-distributions is closely related to employing a well-known technique called the
”M-estimators” for robust estimation of parameters. Therefore, the approach con-
sidered here first estimates the parameters of a mixture of t-distributions, before
converting these inferred parameters into their Gaussian equivalent.

We note that the conversion is not necessarily required and the t-distributions
can be used as it is. However, unlike the simple expression in (3.16), there are
complications in deriving the distribution of the sum of t-distributed random
variables from the parameters of the distribution of the summands; the sum is
no longer a t-distribution. The only exception is the sum of random variables,
each distributed according to a t-distribution with degree-of-freedom 1 (i.e. a
Cauchy distribution), but such considerations are reserved for future work, given
the time constraint of this research.

For a sequence of T power measurements of appliance k, y1:T,k, from a training
dataset, the probability density function of a mixture of t-distributions with Mk
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components is given as

p(yt,k | [(ωi, µi, κ2
i , νi)]

Mk
i=1) =

Mk∑
i=1

ωiφ(yt;µi, κ
2
i , νi), (3.19)

where

φ(yt;µi, κ
2
i , νi) =

Γ
(
νi+1

2

)
(πνi)1/2Γ(νi/2)κi

[
1 + 1

νi

(
yt−µi
κi

)2
] (νi+1)

2

(3.20)

is the probability density function of the ith component t-distribution,
parametrised by the corresponding location parameter µi, scale parameter κi and
the degree-of-freedom parameter νi; ωi refers to the mixing coefficient of the ith
component. The degree-of-freedom parameter can be interpreted as a tuning pa-
rameter for controlling the degree of robustness [Luc97]; a small νi implies higher
robustness or vice versa. In modelling the power consumption of appliances, we
have chosen to fix νi at 3 for all i. Thus, the parameters to be estimated from
T power measurements of appliance k are θe,k = {(ωi, µi, κ2

i )}
Mk
i=1, with νi omit-

ted. Note that the number of states for appliance k, Mk, is determined through
the number of peaks in the histogram. However, other methods like the one de-
scribed in [KDM+16] could be used.

To meet the goal of inferring these parameters, a robust version of EM al-
gorithm for a mixture of t-distributions is adopted from the work of Peel and
McLachlan [PM00]. Before describing the method, we should emphasise that the
EM algorithm as used here differs from the EM algorithm for FVTHMM men-
tioned at the start of Section 3.4, as the latter jointly estimates both λe and λd

from only the aggregate measurements, while the former infers parameters of
the emission model from the appliance-level contributions of a training dataset.
Only the important aspects of the robust EM algorithm to find θe,k are presented
here. For a more detailed exposition and a complete derivation of the relevant
expressions, see [PM00].

In any case, given an initial guess of θe,k or an estimate from the previous
iteration n, θ[n]

e,k, the E-step of the robust EM algorithm involves calculating the
soft assignment probabilities of each power consumption measurement yt,k to the
components i = 1, . . . ,Mk,

τ
[n]
it =

ω
[n]
i φi(yt;µ

[n]
i , κ

[n]
i , νi = 3)∑Mk

i=1 ω
[n]
i φi(yt;µ

[n]
i , κ

[n]
i , νi = 3)

(3.21)
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and the weights

u
[n]
it =

νi + 1

νi +

(
yt−µ[n]i
κ
[n]
i

)2 . (3.22)

Then, in the M-step, the estimates are updated using

ω
[n+1]
i =

∑T
t=1 τ

[n]
it

T
(3.23)

µ
[n+1]
i =

∑T
t=1 τ

(k)
it u

[n]
it yt∑T

t=1 τ
[n]
it u

[n]
it

(3.24)

(κ2
i )

[n+1] =

∑T
t=1 τ

(k)
it u

[n]
it (yt − µ[n+1]

i )2∑T
t=1 τ

[n]
it

. (3.25)

Multiple iterations of such computations are performed until the likelihood∏T
t=1 p(yt | [(ωi, µi, κ

2
i , νi)]

Mk
i=1) converges, upon which the last computed param-

eters are taken to be the final estimates, θ̂e,k = [(ω̂i, µ̂i, κ̂
2
i )]

Mk
i=1.

Finally, the Gaussian parameters in (µk,σ
2
k) are derived from θ̂e such that the

mean of state i of appliance k is the estimated location parameter of the ith com-
ponent, µ̂i, and the variance of state i is the variance of the ith component t-
distribution, i.e. σ2

i = νi(νi − 2)−1κ̂2
i . The estimated mixing coefficients [ω̂i]

Mk
i=1 are

not used.

The reduced sensitivity to outliers can be understood from the role of νi and
uit in influencing the estimates of µi and κ2

i . For small values of νi, the Maha-
lanobis squared distance, (yt−µi

κi
)2, in the denominator of (3.22) greatly reduces

the value of uit if a certain data point yt is far away from the location parameter
µi. Therefore, as can be seen in (3.24) and (3.25), the influence of such data points
are downweighted when computing for the new iteration’s µi and κ2

i . Whereas,
if νi is large, the values of uit will be less affected by the Mahalanobis squared
distance; in the limit of νi → ∞, uit becomes 1, leading to the case where all data
points are equally weighted and thus, falling back to an ordinary non-robust EM
algorithm for a mixture of Gaussian distributions. This is how the value of νi con-
trols the robustness of the estimates to potential outlying values in the training
dataset.
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Examples of application to real-world appliance data

The direct application of an ordinary EM algorithm for a mixture of Gaussian dis-
tributions (henceforth referred to the non-robust EM) is not robust to anomalies
which potentially exist in real-world data. Figure 3.5 shows an example of one
such anomaly from the REDD dataset, where the highlighted value is not actu-
ally part of the nominal power consumption but an intermediate value that was
sampled by chance while the appliance transitioned from the ON state to the OFF
state.

Even though the occurrence of these outlying observations is not as com-
mon as that of the normal measurements for this particular appliance (see Fig-
ure 3.6), they are able to influence the fitted distribution obtained via the non-
robust EM greatly. Specifically, the second mixture component of the distribu-
tion has a slightly left-shifted mean and a large variance that is not reflective of

Figure 3.5: An anomalous measurement. The operating power of 642 Watts for the second
kitchen outlet of house 2 of the REDD dataset has a

∑
i uit value of approximately zero,

indicating that this is potentially an outlier. In fact, upon closer inspection, this operating
power is the intermediate value sampled during the ON-to-OFF transition. Thus, as far
as steady-state operation is concerned, it can be considered an anomaly.
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the actual operation of the appliance. This is especially apparent, if we consider
the quantile-quantile plots for the robustly fitted distribution and the non-robust
counterpart shown in Figure 3.7a and Figure 3.7b. Ideally, the points should lie
on the diagonal line. However, as shown in Figure 3.7b, there is a large deviation;
a large number of data points fall into the quantiles corresponding to the second
mixture component, indicating that the non-robustly fitted distribution deviates
significantly from the underlying distribution inherent to the data.

Similar results can also be seen from fitting a distribution over the data of a
refrigerator, as shown in Figure 3.8. Particularly, the intermediate power values
between state transitions appear to smear two mixture components of the non-
robustly fitted distribution, shifting away their means from the two clusters of
data centring at about 350W and 420W, before merging into one partially over-
lapping component with mass spreading across a wide range of values. Addi-
tionally, from the quantile-quantile plot of the non-robust EM in Figure 3.9b, the
large number of points deviating from the 45◦ line suggests that the distribution
is forced to stretch across horizontally to accommodate the outlying observations,
at the expense of modelling each cluster accurately.

On the other hand, the few points associated with the upper tail-end of the
data, as illustrated in Figure 3.9a and Figure 3.9b, do not seem to fit well for
both that of the robust EM and the non-robust EM as the transients at the onset

0 200 400 600 800 1000
0

0.5

1

1.5
10-4

Figure 3.6: Distribution-fitting on the second kitchen outlet of house 2 of the REDD
dataset using robust EM (mixture of t-dist) vs non-robust EM (mixture of Gaussian).
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(a) Using the robust EM algorithm (b) Using the non-robust EM algorithm

Figure 3.7: Quantile-quantile plot of the second kitchen outlet of house 2 of the REDD
dataset with the fitted distribution.

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2
10-3

Figure 3.8: Distribution-fitting on the refrigerator of house 2 of the REDD dataset using
robust EM (mixture of t-dist) vs non-robust EM (mixture of Gaussian).
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(a) Using the robust EM algorithm (b) Using the non-robust EM algorithm

Figure 3.9: Quantile-quantile plot of the refrigerator of house 2 of the REDD dataset with
the fitted distribution.
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Figure 3.10: The large variation in transient spikes of the refrigerator.

of each operating cycle of the refrigerator vary over a large range of values (see
Figure 3.10). However, the robustly fitted distribution over the other clusters is
clearly less affected by these anomalies, judging from the relatively large number
of data points close to the 45◦ line.

One other interesting observation of the refrigerator data is the skewness of
distribution of the cluster centring at around 180W, owing to the gradual decay in
power consumption over each operating cycle. As the Gaussian distribution can-
not model skewness, it is not surprising to see that a number of points at around
the 180W mark in Figure 3.9a deviate slightly from the 45◦ line. Nevertheless, as
far as the learning of model parameters is concerned, the results presented thus
far are able to validate the advantage of using the robust EM algorithm over the
non-robust variant.
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3.4.2 Parameter Estimation for the Temporal Model

The process of estimating λd consists of two main steps, the first of which is the
extraction of appliance state durations from the appliance-level contributions in
a training dataset. Also part of this outcome are the learned parameters related
to the Markov state transitions. Then, in the second step, by using the extracted
durations, the parameters governing the state duration distributions in (3.17) are
inferred. A description of these steps is provided in the discussion that follows.

Extraction of Appliance State Durations

A prerequisite to the extraction of the list of sojourn times corresponding to state
i of appliance k is the segmentation of the appliance measurements in terms of its
possible states. In other words, given y1:T,k from the training data, x1:T,k needs to
be estimated.

To achieve this without any knowledge of the underlying Markov process (i.e.
πk andAk are unknown), an iterative procedure known as the segmental k-means
algorithm [JR90] is employed. While the algorithm in [JR90] also estimates the
emission model parameters (µk,σk) in addition to x1:T,k, πk and Ak, we fixed the
estimates of (µk,σk) to the values found using the robust EM algorithm described
in Section 3.4.1. Also, because the starting value of a window of power measure-
ments selected from the training data is less constrained than in the case of speech
modelling where the vocalisation of a particular syllable has well-defined begin-
nings, the initial probability of entering state i is less important in the context of
our problem. Thus, instead of estimating πk from the training data, the princi-
ple of indifference is used such that πi is assigned the same value of 1/Mk for
all i ∈ Mk. That is to say, the probability of entering state i at the start of a se-
quence of measurements is uniformly distributed across all possible Mk states of
appliance k.

In each iteration of the segmental k-means algorithm, there are two parts.
The first part is simply an application of the Viterbi algorithm described in Sec-
tion 2.6.2, but with inputs from y1:T,k, (µk,σ

2
k) and the initial guess or previous

estimate of Ak. This means the nth iteration of the first part yields the segmen-
tation x

[n]
1:T,k. For the second part, the estimate of Ak is updated with x

[n]
1:T,k using

a
[n+1]
i,j =

1/Mk +
∑T

t=2[x
[n]
t−1,k = i ∧ x[n]

t,k = j]

1 +
∑Mk

j=1

∑T
t=2[x

[n]
t−1,k = i ∧ x[n]

t,k = j]
, (3.26)
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where [·] is the Iverson bracket [Knu92] such that for proposition V ,

[V ] =

1, if V is true,

0, otherwise.
(3.27)

Note that the expression in (3.26) is different from that of the maximum likelihood
estimation in [JR90], i.e.

a
[n+1]
i,j =

∑T
t=2[x

[n]
t−1,k = i ∧ x[n]

t,k = j]∑Mk

j=1

∑T
t=2[x

[n]
t−1,k = i ∧ x[n]

t,k = j]
, (3.28)

since a uniform prior over each row of Ak is imposed, as has been done by
Shahrokni et al. [SDF04] for the detection of texture boundaries in computer vi-
sion.

Like any iterative algorithms described previously, the segmental k-means
algorithm terminates when the likelihood p(x1:T,k, y1:T,k | Ak) converges, upon
which the estimate of x1:T,k and the estimate of Ak are obtained.

Lastly, with the estimated state sequence, x̂1:T,k, the list of durations for each
state i ∈ Mk can be easily extracted by recording the length of each block of
consecutive i in x̂1:T,k. If there are S such blocks, then the length of each block s is
denoted by ds, such that {ds}Ss=1.

Inference of Model Parameters using Minimum Message Length

Suppose that a list of S durations for a certain state i of appliance k, {ds}Ss=1, has
been obtained from the preceding step. The objective is then to estimate Θi =

{(ml,i, αl,i, βl,i)}Lil=1. However, because the number of components in the Gamma
mixture model, Li, is also unknown, it needs to be inferred as well. This is where
the minimum message length (MML) principle comes in.

As described in the seminal paper of Wallace and Boulton [WB68], the core
idea of the MML principle is that, the model which results in the shortest overall
message length should be chosen, given that it is the most parsimonious one in
the information-theoretic sense. The overall message consists of two parts; the
first part is the encoded model, while the second part refers to the encoded data
as a result of using the model specified in the first part of the message. Formally,
the total message length (in bits or nats) is given as

I(Θ,D) = I(Θ) + I(D | Θ), (3.29)
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where I(Θ) and I(D | Θ) are the lengths of the first and second part of the overall
message respectively; for our case, D corresponds to {ds}Ss=1, whereas Θ is Θi.

In the context of mixture modelling and the problem of selecting the appro-
priate number of components Li, the goal of minimising the total message length
acts as a regulariser for model complexity. In particular, although having a model
which has many components may allow for a more precise way of describing the
data (e.g. higher likelihood p(D | Θ) or equivalently, shorter message length for
the data part I(D | Θ)), there are associated risks of overfitting. To account for
this, the MML principle introduces an intuitive notion of penalising for large Li.
The basic concept is that each component’s parameters require a certain number
of bits to be encoded, and a large Li implies a longer length for the model part of
the message. Therefore, in solving the MML problem, i.e.

Θ̂ = arg min
Θ

I(Θ,D), (3.30)

a trade-off is implicitly imposed, such that the choice of Θ still allows for effi-
cient encoding of the data portion of the message, but without severely inflating
the size required for the encoded model. In short, the optimal Θ is the one that
provides the best compromise in terms of the overall message length.

The minimisation in (3.30), as applied to our problem, necessitates the specifi-
cation of I(Θi) and I({ds}Ss=1 | Θi). The former is

I(Θi) = Li log(2) +
Li − 1

2
log(S)− 1

2

Li∑
l=1

log(ml,i)− log(Li − 1)!

−
Li∑
l=1

log

(
1

βl,i

)
−

Li∑
l=1

log

(
2

π(1 + α2
l,i)

)

+
1

2

Li∑
l=1

log

(
S2

β2
l,i

[
αl,iψ

(1)(αl,i)− 1
])

,

(3.31)

where ψ(u)(αl,i) denotes the uth order polygamma function defined as

ψ(u)(αl,i) =
du+1

dαu+1
l,i

log
(
Γ(αl,i)

)
, (3.32)

while the latter is

I({ds}Ss=1 | Θi) = −
S∑
s=1

log

 Li∑
l=1

ml,ig(ds;αl,i, βl,i)

 , (3.33)



Page 72 Chapter 3. MODELLING OF APPLIANCE BEHAVIOUR

with g(ds;αl,i, βl,i) being the probability density function of the Gamma distribu-
tion. A complete derivation of these expressions is presented in Section A.1 of
Appendix 1.

Then, for a given Li, the optimum Θi in (3.30) is obtained using the EM algo-
rithm. In the nth iteration, the E-step involves calculating the posterior probabil-
ity of assigning the sth duration to each mixture component l,

r
[n]
ls =

m
[n]
l,i g(ds;α

[n]
l,i , β

[n]
l,i )∑Li

l=1m
[n]
l,i g(ds;α

[n]
l,i , β

[n]
l,i )

. (3.34)

This is followed by the M-step, whereby the parameter estimates are updated by
computing

m
[n+1]
l,i =

1
2

+ S
[n]
l

S + Li
2

(3.35)

β
[n+1]
l,i =

∑S
s=1 dsr

[n]
ls

α
[n]
l,i S

[n]
l

, (3.36)

where S[n]
l =

∑S
s=1 r

[n]
ls . Unfortunately, the expression for α[n+1]

l,i does not have a
closed form, given that it is defined implicitly by

log

(∑S
s=1 dsr

[n]
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S
[n]
l

)
−
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s=1 r
[n]
ls log(ds)
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[n]
l

+
2α
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α
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1

2S
[n]
l

α[n+1]
l,i ψ(2)(α

[n+1]
l,i ) + ψ(1)(α

[n+1]
l,i )

α
[n+1]
l,i ψ(1)(α

[n+1]
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− log(α

[n+1]
l,i ) + ψ(0)(α

[n+1]
l,i ) = 0.

(3.37)

As such, α[n+1]
l,i is searched for numerically using root-finding algorithms. For a

complete derivation of these equations, see Section A.2 of Appendix 1.

Over multiple iterations, the E-step and M-step are repeated until the total
message length I(Θi, {ds}Ss=1) converges, at which point, the estimated Θi and
the corresponding total message length as a result of using Li components are
recorded. Then, with multiple runs of the EM algorithm for a range of different
Li, the Θi with the Li which results in the shortest message length is selected as
the learned model.
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Examples of applying to real-world appliance data

Figure 3.11 shows the variation in message length as the number of mixture com-
ponents increases, when learning is performed on the extracted durations of the
OFF state from the dishwasher shown in Figure 3.4. It illustrates that, for this
particular case, two mixture components should be used as the smallest I(D,Θ)

occurs at Li = 2.

Figure 3.11: The variation in message length with the number of mixture components Li.
Learning is performed on the extracted durations of the OFF state from the dishwasher
shown in Figure 3.4.

The result is consistent with the description given in Section 3.3.2 on the OFF
state duration of the dishwasher. One component is for modelling the short OFF
periods embedded in an operating cycle while the other component is respon-
sible for modelling the long inter-usage durations. Thus, this outcome of using
MML does not deviate from the prior expectation that two mixture components
should be used. Also shown is the fitted mixture of two Gamma distributions in
Figure 3.12.

3.4.3 Summary

A summary of the learning process as described in the previous two subsections
is given in Figure 3.13.

For each appliance k, the power measurements from the training data are used
for estimating the mean and variance of each state via the robust EM algorithm.
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Figure 3.12: The learned model of the OFF state duration of the dishwasher shown in
Figure 3.4.
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Power measurements of appliance k
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State segmentation

Figure 3.13: Overview of the learning procedure
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Next, using the segmental k-means algorithm, the initial state probability and the
Markov state transition matrix of appliance k are estimated, while the states cor-
responding to the power measurements are inferred. Then, a list of durations
for state i of appliance k is extracted, from which the parameters of a mixture of
Gamma distributions are estimated by means of the MML principle. Finally, the
learning process terminates when the parameters for each state and each appli-
ance are obtained, i.e. λe and λd.

3.5 Experimental Results and Discussion

In this section, we validate the proposed model, FVTHMM, in terms of its ability
to generate power samples that closely mirror the operational behaviour of mod-
elled appliances, and its ability in aiding the separation of appliances with similar
power consumption during disaggregation.

3.5.1 Generation of Appliance Power Consumption

Although the end goal of this research is to produce estimates of power consump-
tion for each appliance from the aggregate power measurements, it is interesting
to consider the reverse process in which power consumption measurements of
appliances are generated from the learned models, for validation purposes. This
is possible as the model is that of a stochastic process, of which realisations can
be made. To that end, power samples are drawn probabilistically and their out-
puts are compared against the actual consumption data from the training set. For
demonstration purposes, we have chosen to use appliances in house 2 from the
REDD dataset as the basis for this comparison.

Among the important loads considered are the refrigerator, the dishwasher,
the stove and the kitchen outlets. Their power consumption and the generated
counterparts are presented in Figure 3.14. A number of observations can be made.
Firstly, the generated power values of the refrigerator and the dishwasher, while
they are operating, have noticeably larger variance than that of the actual power
values. This is attributed to the non-stationarity of the power consumption data
as a result of the gradual decay in power that is apparent in both cases. Because
the emission model is assumed to be stationary, the variance of the fitted distribu-
tion is inflated. Therefore, it is to be expected that the generated data has a larger
noise level. A solution to this is to relax the assumption, such that the power
consumption for a given state is no longer i.i.d. across time, but dependent on
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the duration from which the state is first entered, i.e. p(yt,k | xt,k, ct,k) instead of
p(yt,k | xt,k) in (3.15). A brief investigation of such an approach is described in
Section 4.5 of Chapter 4.

Secondly, the figure also illustrates that, for the dishwasher and the kitchen
outlets 2, the time progression of the generated power values does not seem to
follow that of the actual power values. Among other apparent differences, the
rapid-switching of power consumption for the dishwasher in the middle of its
operating cycle does not occur for the generated version. Likewise, the wide
pulse from the actual measurements of the kitchen outlets 2 always happens at
the start of each operating cycle, but it is not reflected in its generated counter-
part. Instead, two wide pulses are located in the middle, at least for the realisation
shown in Figure 3.14h. This deviation from actual behaviour is a result of associ-
ating a single state to each power level. In particular, one state of the dishwasher
is tied to the cluster of power values centring at around 250W, regardless of where
in the operating cycle 250W is consumed. This notion of a state does not reflect
the device’s actual behaviour, as the first 250W of the dishwasher could be related
to the ”wash” state while subsequent ones might belong to other device’s states.
The same can also be said for the one-to-one mapping between one state of the
kitchen outlets 2 and the power draw of 1000W. If additional states could be in-
troduced to distinguish between similar power levels occurring at different times
in one device activation, power values closely mirroring that of the actual be-
haviour of appliances could be generated. However, because our objective is not
to build an accurate appliance simulator, the one-to-one mapping is maintained
for the task of disaggregation as described in subsequent chapters. In fact, this
notion of a state appears to be employed in majority of existing work on NILM
[MHHE11, KJ11, EBE15, MPB+16, KDM+16].

Lastly, one other observation is the clear difference between the actual and
the generated power values for the stove, as shown in Figures 3.14e and 3.14f.
The main reason for this, in addition to the one-to-one mapping described earlier,
is the use of only a single Gamma distribution for representing the state dura-
tion of the stove, since there is a lack of duration data for fitting a more complex
model with many components; the stove in house 2 of the REDD dataset was
only used twice during the monitoring period. As such, there is insufficient data,
and samples drawn from a single Gamma distribution is not likely to replicate
the distinctive pulses in the actual power values of the stove.
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(a) Actual: refrigerator (b) Generated: refrigerator

(c) Actual: dishwasher (d) Generated: dishwasher

(e) Actual: stove (f) Generated: stove

(g) Actual: kitchen outlets 2 (h) Generated: kitchen outlets 2

Figure 3.14: Comparison between the actual power consumption and the generated
power consumption for different appliances in house 2 of the REDD dataset.
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Nevertheless, in spite of the limitation as an appliance simulator given the def-
inition of ”state” used, the ability to incorporate state durations for the purpose
of load disaggregation is invaluable, as we shall see in the next subsection.

3.5.2 Robustness Against Overlaps in Power Features

As mentioned in Chapter 2, one of the most important issues in the disaggrega-
tion of low sampling rate data is the overlaps or similarities in power features
between appliances. To validate the robustness of FVTHMM in this regard, the
two sequences of power consumption data are generated, each corresponding to a
synthetic appliance. For testing against the worst case scenario, both synthetic ap-
pliances are configured to have the same power consumption but different state
duration characteristics. The two sequences are then added together to form the
aggregate data. Relative to FHMM, comparison is made on the basis of how well
FVTHMM enables the two synthetic appliances to be identified correctly.

The emission model and the state duration model of the synthetic appliances
are specified by random variables that have a Gaussian distribution and a Gamma
distribution respectively. Figure 3.15 shows the model for the ON state of the
synthetic appliances. The full model specification is summarised in Table 3.1 and
Table 3.2. For disaggregation with FVTHMM, the parameters used are exactly
the same as those employed for generating synthetic data, while for the case of
FHMM, the Markov state transition matrices used have self-transition probabili-
ties that are consistent with the mean state durations, i.e. ai,i = E[d]−1

E[d]
. For exam-

ple, the mean duration of the ON state of appliance 1 is 100 time steps. Therefore,
ai,i for i = 1 is 0.99. Table 3.3 shows the complete Markov state transition matrices
derived in this manner.

Table 3.1: Emission model of the synthetic appliances.

Synthetic
Appliance State, xt,k Mean, µ Standard

Deviation, σ

1 0 6.053 0.454
1 161.713 8.105

2 0 6.053 0.454
1 161.713 8.105

Given that the number of appliances considered for this test is small, the
Viterbi algorithm is used for state inference under both FVTHMM and FHMM.
For real-world situations with many appliances however, this is no longer com-
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(a) Power consumption (b) State duration

Figure 3.15: The probability density function over power consumption and state duration
for the ON state of the synthetic appliances.

Table 3.2: State duration model of the synthetic appliances.

Synthetic
Appliance State, xt,k Shape, α Scale, β

1 0 100.000 2.000
1 11.111 9.000

2 0 40.111 4.737
1 6.760 19.231

Table 3.3: State transition matrices used for disaggregation under FHMM.

(a) Synthetic appliance 1

State, xt,1 0 1
0 0.9950 0.0050
1 0.0100 0.9900

(b) Synthetic appliance 2

State, xt,2 0 1
0 0.9497 0.0503
1 0.0077 0.9923

putationally tractable. As such, a new algorithm is developed and it is detailed
in Chapter 4.

Figure 3.16 presents the disaggregation outcome on one instance of the gener-
ated synthetic data shown in Figure 3.16a. Compared to FHMM, it is apparent
that FVTHMM is able to reconstruct the contributions of appliance 1 and ap-
pliance 2 accurately, even when there is essentially no difference in power con-
sumption between the two appliances. In contrast, FHMM fails to give correct
results as the state transition information is not sufficient to provide the means to
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disambiguate between appliance 1 and appliance 2. Indeed, the state transition
probabilities in Table 3.3 are similar, despite actual differences in state duration
characteristics.

Overall, the results presented herein confirm the advantage of modelling the
state duration explicitly as demonstrated in the work by Kim et al. [KAL11] and
Johnson and Willsky [JW13]. Though, with FVTHMM, the state transition proba-
bility can be updated incrementally and dynamically, facilitating the implementa-
tion of a real-time load disaggregation system. This is exemplified in Figure 3.17,
where the hazard function values for the corresponding estimates given in Fig-
ure 3.16b are shown. It illustrates that the probability of switching states is not
static but increases with the number of time steps since entering the current state.

3.6 Summary

In this chapter, we have presented an alternative variant of the hidden semi-
Markov model (HSMM) for representing appliance behaviour: factorial variable
transition hidden Markov model (FVTHMM). Besides being able to explicitly ac-
count for the duration of states, it also incorporates the notion of time-varying
duration-dependent state transition probability. This allows for the real-time up-
dates of probability values during state inference.

Further, we attempted to generate power values from the learned appliance
model. While the outcome does not exactly mirror that of the actual behaviour
of appliances, the discrepancy is not intrinsic to FVTHMM. Instead, it stems from
the one-to-one association between the states and power levels.

Additionally, we showed that compared to established methods based on
FHMM, overlaps in power consumption between appliances could be resolved
with our proposed model, confirming the significance of modelling state dura-
tions when only low rate power consumption measurements are available.

For learning model parameters, the use of a robust EM algorithm is demon-
strated. In comparison to an ordinary EM algorithm, it was found that outlying
values due to transients and other anomalies are less likely to affect the fitted
distribution.

Lastly, the minimum message length (MML) principle has not been used in
NILM before and it was shown to be valuable in automatically inferring the num-
ber of clusters inherent in the duration distribution. Other issues which have not
been discussed in this chapter are the specifics of efficient inference of states un-
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der FVTHMM and the computational scalability for cases with many appliances.
Detailed discussion on these are given in the next chapter.
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(a) The generated synthetic data
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(c) Disaggregation with FHMM

Figure 3.16: Comparison between the ability of FVTHMM and FHMM in identifying
two synthetic appliances with the same power consumption but different state duration
characteristics.
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Figure 3.17: The time progression of the hazard function or the probability of switching
states as used by FVTHMM.
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CHAPTER FOUR

APPLIANCE STATE INFERENCE

Appliance state inference plays a central role in Non-intrusive Load Monitor-
ing (NILM). The objective is to estimate the states of each appliance of interest
given the observed aggregate measurements. Although there are various tech-
niques that could be used for state inference under the proposed factorial variable
transition hidden Markov model (FVTHMM), most do not meet the objective of
performing disaggregation in real-time and do not scale well computationally.
Thus, a new algorithm – Particle-Based Distribution Truncation (PBDT) – is pro-
posed for overcoming such limitations. It combines the dynamic programming
approach of the Viterbi algorithm and the survival-of-the-fittest concept from par-
ticle filters, allowing multiple appliance state trajectories to be tracked in real-time
efficiently. In this chapter, we begin by providing the motivation for the proposed
method, before describing the computational issues of the Viterbi algorithm when
applied to FVTHMM. Then, in addressing the pertinent limitations, a comprehen-
sive account of the PBDT algorithm is given, with emphasis on certain properties
that could be exploited to facilitate the sharing of computation results for improv-
ing computational performance. This is followed by a detailed evaluation of its
disaggregation accuracy over the data from real homes, and the validation of its
time complexity in relation to real-time applications. Also introduced is a new
metric for identifying the source of disaggregation errors. Lastly, the incorpora-
tion of features based on power decays into FVTHMM is briefly investigated and
its improvements are presented. Part of the work pertaining to this chapter has
been published in a journal paper [WcD14].

4.1 Introduction and Related Work

The proposed model, FVTHMM, as described in Chapter 3, is an instance of a
broader class of latent variable models. The internal state of appliance k at time
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t, xt,k, is considered hidden, and accordingly, determines its power consumption,
yt,k. As such, inferring the unknown states of appliances given the aggregate-level
measurements is the main objective to be pursued, as far as load disaggregation is
concerned. One standard way of estimating the states is to select those for which
the likelihood of observing the aggregate-level measurements is maximised, or
formally,

x̂1:T = arg max
x1:T

p(x1:T , y1:T ), (4.1)

where xt refers to the system state consisting of the states of K appliances at time
t, i.e. xt = (xt,1, . . . , xt,K), and yt is the corresponding aggregate power consump-
tion.

The maximisation in (4.1) is typically performed using the Viterbi algorithm.
However, due to the extended state space induced by the additional counter vari-
ables (see (3.2)), its direct application under FVTHMM is not computationally
feasible, except for a limited set of impractical scenarios. While other techniques
such as simulated annealing and Gibbs sampling could be adapted from previ-
ous work [KAL11, JW13], they are only inherently suited for batch-processing;
blocks of aggregate measurements have to be obtained (e.g. a day’s worth) before
inference of states is performed retrospectively. Therefore, as mentioned in Sec-
tion 2.6.2 of Chapter 2, these approaches are limited in their ability to disaggregate
power consumption measurements in real-time, thereby preventing NILM from
offering low-latency feedbacks required as part of increasing user engagement
towards conserving energy [PSJ+07] and limiting it from being used as the basis
for interactive applications noted in Chapter 1.

To that end, a new state inference algorithm is clearly needed to meet the goal
of this research. The main contributions presented in this chapter are:

• A computationally efficient algorithm for the real-time tracking of appli-
ance states. Sharing of computation results and intelligent pruning of im-
plausible solutions enable the method to be run on houses with a combined
system state count of 20 billion.

• A tractable method for inferring the hidden states under the proposed fac-
torial variable transition hidden Markov model (FVTHMM).

• A metric for quantifying whether the errors in state inferences are due to
modelling inaccuracies or an artefact of the incorrect pruning of solutions.

• Improvements to the base FVTHMM model presented in Chapter 3 for tak-
ing into account gradual decays in power consumption.
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Note that, the state inference algorithm presented in this chapter has been
completed in 2014. While several NILM approaches [MPB+16, IS16, KDM+16,
KDH+16, TWLT16] have been developed since then (see Chapter 2), none were
particularly suitable for our probabilistic model detailed in Chapter 3. One ap-
proach, published in late 2016 by Lange and Bergés [LB16], however, followed
our published work of 2014 [WcD14], giving credence to the method presented
here. In particular, their state inference algorithm is based on pruning improba-
ble solutions, though unlike our earlier work, the model to which their method
is applied does not capture state durations explicitly. This has potential impli-
cations in differentiating between appliances with similar power consumption.
Moreover, the method which we developed is more essential under our more
powerful model. Without it, computations can be intractable, as we shall see in
the subsequent sections.

4.2 Computational Issues of the Viterbi Algorithm

We have shown in Section 2.6.2 of Chapter 2 the description of the Viterbi algo-
rithm for an ordinary hidden Markov model (HMM). In this section, we expand
on that discussion for the VTHMM and the FVTHMM from an algorithmic and
computational perspective, to highlight the issues of computational intractability
and to motivate the need for the developed approach as detailed in Section 4.3.

4.2.1 Complexity Analysis Under VTHMM

Recall from Chapter 3 that a defining part of the VTHMM formulation is the
time-varying duration-dependent state transition probability. The joint proba-
bility over all its random variables is

p(x1:T , y1:T , c1:T ) = p(x1)p(c1)
T∏
t=1

p(yt | xt)

×
T∏
r=2

p(xr | xr−1, cr−1)p(ct | xr, cr−1, xr−1),

(4.2)

where xt is the state at time t, ct is the corresponding counter value and yt is the
observed value at time t.
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In maximising the joint probability over the space of possible x1:T and c1:T , the
base case (i.e. t = 1) and the general case of the Viterbi score δt(·) are

δ1(i, c1) =

p(x1 = i)p(y1 | x1 = i), if c1 = 1

0, otherwise
(4.3)

δt(j, ct) =



max
1≤i≤M
i 6=j

[
p(yt | xt = j) max

1≤τ≤t−1

(
δt−1(i, τ)

×p(xt = j | xt−1 = i, ct−1 = τ)
)], if ct = 1

δt−1(j, τ)p(yt | xt = j)

×p(xt = j | xt−1 = j, ct−1 = τ)
, otherwise.

(4.4)

respectively [RW92]. Note that the factor p(ct | xt, ct−1, xt−1) is not present in (4.4)
since it is implicitly taken into account by the conditioning on ct in the piece-wise
expression.

The two conditions in (4.4) are required to maintain the consistency in the
relationship between the counters and any state changes; the counters must reset
to one whenever a state change occur while the counters have to be incremented
by one if the state remains the same as that of the previous time step. As such, for
a given augmented state (j, τ) with device state j and a counter value of τ 6= 1 at
time t, the only possible originating augmented state at time t−1 is (j, τ−1); all the
other transitions to (j, τ) are impossible by construction. In contrast, a destination
augmented state with τ = 1 for any j can be a result of transitioning from an
augmented states with any counter value up to t − 1 as long as the previous
device state was i 6= j.

Although these constraints show that not all transitions need to be explicitly
evaluated in the Viterbi algorithm of VTHMM, the upper bound for the number
of required computations is still large; if the state cardinality is M and there are T
observations, the time complexity for inferring the hidden states is O(M2T 3). To
understand this, consider the trellis structure for a 2-state VTHMM (i.e. M = 2)
shown in Figure 4.1. It illustrates that the number of augmented state starts out
at M and grows by an additional M at each time step before finally reaching
MT at time T . Hence, a direct application of the Viterbi algorithm would require
M + M2

∑T
t=2 t(t − 1) operations in total, culminating in a time complexity of

O(M2T 3). While the Viterbi algorithm in this instance is tractable for reasonable
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Figure 4.1: Trellis structure corresponding to a 2-state VTHMM. The notation used in
each cell is (xt, ct).

values of M and T , its use for the factorial variant of VTHMM is computationally
difficult, as we shall see in the next subsection.

4.2.2 Complexity Analysis Under FVTHMM

The formulation of the Viterbi algorithm for a K-chain FVTHMM is a straightfor-
ward extension from that of the VTHMM. If we let ik and jk denote the previous
state and the current state of the kth chain respectively, and if we also define a
set of indices, G, such that G = {k ∈ {1, . . . , K} | ik = jk}, the base case and the
general case of the Viterbi recursion can be written as

δ1(i, c1) =

p(x1 = i)p(y1 | x1 = i), if c1 = 1

0, otherwise,
(4.5)

δt(j, τ
+) = max

i,τ

[
δt−1(i, τ )p(yt | xt = j)

× p(xt = j | xt−1 = i, ct−1 = τ )

× p(ct = τ+ | xt = j, ct−1 = τ ,xt−1 = i)
]
,

(4.6)
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where τ = (τ1, . . . , τK), i = (i1, . . . , iK), j = (j1, . . . , jK), 1 is a vector of 1s of size
K and τ+ is a vector whose kth element is τk + 1 if k ∈ G and 1 otherwise. For
transitions that do not result in any state changes (i.e. i = j), (4.6) simplifies to

δt(i, τ + 1) = δt−1(i, τ )p(yt | xt = i)

× p(xt = i | xt−1 = i, ct−1 = τ ),
(4.7)

mirroring the second case of (4.4).

Figure 4.2 shows the trellis structure of the Viterbi algorithm for a FVTHMM
with two 2-state chains (i.e. K = 2, M = 2). Compared to before, the number
of cells at each time step t is now MKtK , growing to MKTK at the end, while
there are MK +M2K

∑T
t=2 t

K(t− 1)K operations in total for the Viterbi algorithm.
This means, the space complexity and the time complexity are O(MKTK+1) and
O(M2KT 2K+1) respectively. To get a sense of this, consider ten 2-state appliances
and a day’s worth of aggregate power data obtained through a sampling rate of
1Hz (i.e. K = 10, M = 2 and T = 86400). The number of computations needed
would be in the order of 10214, which is a factor gain ofO(T 2K) = 10197 relative to a
FHMM with the same K, M and T . Clearly, coupled with the exponential growth
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Figure 4.2: Trellis structure corresponding to a FVTHMM model with two 2-state chains
(i.e. M = 2,K = 2). The notation used in each cell is (xt, ct). To prevent clutter, the lines
illustrating the trellis connections have been removed.
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in the space required to store the trellis structure, the use of Viterbi algorithm for
exact state inference under FVTHMM is not tractable.

4.3 Particle-Based Distribution Truncation (PBDT)

To address the computational issues pertaining to state inferences in FVTHMM,
we proposed a new method named Particle-Based Distribution Truncation
(PBDT). The method is an approximation to the Viterbi algorithm, combining
the dynamic programming approach of the latter with the survival-of-the-fittest
concept from particle filters.

In the subsections that follow, a detailed description of the algorithm will be
first given. Then, we present further computational optimisations that should be
included as part of an implementation. This is followed by a comparison between
the PBDT algorithm and the Viterbi algorithm.

4.3.1 Algorithm

Central to the PBDT algorithm is the notion of particles. Each nth particle is a
data structure carrying a set of relevant attributes. The attributes are a hypothesis
or a state estimate Xt(n) for explaining the observed measurement at time t (e.g.
aggregate power measurement at time t), an associated score St(n) (e.g. the like-
lihood of a state sequence ending with Xt(n)), and a reference to a parent particle
ψt(n). The particles may also include additional attributes that are relevant to a
particular application. In the case of FVTHMM, this includes Ct(n), an attribute
denoting the counter vector. The task of the PBDT algorithm is then to system-
atically generate such particles at each time step or whenever new measurement
arrives, while allowing for state inferences to be done efficiently.

The data structure of such particles can be visualised as a forest of trees with
a link pointing from each child to its parent, like shown in Figure 4.3. Some parti-
cles may not have arrows leading back to them as they do not have children given
their low scores relative to others. Throughout the operation of the algorithm, this
structure will be maintained while the score for each nth particle is updated via
the recursion

St(n) =

{
B1(n), if t = 1

St−1(m) + Ut(n), if t > 1,
(4.8)

where B1(n) signifies the initial base score, Ut(n) is the stage cost used for updat-
ing the score and m is the parent of nth particle at time t, i.e. m = ψt(n).
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Henceforth, we shall refer to Xt(n) as the system state estimate of the nth par-
ticle at time t and m as the index of parent of the same particle (i.e. Xt(n) = x̂

(n)
t

and m = ψt(n)), while x̂
(n)
1:t denotes the system state trajectory obtained from

the concatenation of x̂
(n)
t , x̂(m)

t−1, and so on until that of the parent of the corre-
sponding particle at time t = 2, i.e. x̂

(n)
1:t = (. . . , x̂

(m)
t−1, x̂

(n)
t ). In this regard, each

nth trajectory ending at time t, x̂(n)
1:t , could be a candidate solution for explaining

the observations y1:t. The same relation applies to Ct(n), ĉ(n)
t and ĉ

(n)
1:t . For nota-

tional convenience, we will also group the fields of each nth particle into a tuple
Pt(n) = (Xt(n), ψt(n), Ct(n),St(n)), whereas Pt refers to the list of generated par-
ticles at time t, P t is the version of Pt which is sorted in descending order of the
score, and P̃t is the truncated version of P t, as we shall see later.

Under FVTHMM, and in line with the recursive expression of the joint proba-
bility in (3.7), the terms of (4.8) take the following more concrete form,

• B1(n) := log(p(x̂
(n)
1 )) + log(p(yt | x(n)

1 ))

• St(n) := log(p(x̂
(n)
1:t , y1:t))

• Ut(n) := log(p(x̂
(n)
t , ĉ

(n)
t | x̂

(m)
t−1, ĉ

(m)
t−1)) + log(p(yt | x̂(n)

t )),

particle(k + 1,t + 1)
● state
● parent
● score

particle(k,t + 1)
● state
● parent
● score

particle(k - 1,t + 1)
● state
● parent
● score

particle(j,t)
● state
● parent
● score

particle(j + 1,t)
● state
● parent
● score

particle(j - 1,t)
● state
● parent
● score

particle(i + 1,t - 1)
● state
● parent
● score

particle(i,t - 1)
● state
● parent
● score

particle(i - 1,t - 1)
● state
● parent
● score

Figure 4.3: Data structure of particles.



Page 93

resulting in

St(n) =


log(p(x̂

(n)
1 )) + log(p(yt | x(n)

1 )), if t = 1

St−1(m) + log(p(yt | x̂(n)
t ))

+ log(p(x̂
(n)
t , ĉ

(n)
t | x̂

(m)
t−1, ĉ

(m)
t−1))

, if t > 1.

(4.9)

For the purpose of describing PBDT, suppose that we have already generated
Np(t−1) particles at time t−1 (i.e. P̃t−1) and we would like to generate a new list
of particles for the current time step t (i.e. P̃t). The naive approach entails enu-
merating all possible next states for each parent particle, evaluating the score or
likelihood of those states, before finally keeping a maximum of theNp,max highest-
scoring particles. However, this is wasteful and computationally inefficient, since
we can typically tell in advance the states which are not going to be among the
Np,max kept particles. As such, it is normally the case that not all possible states
need to be considered.

To that end, with consideration of the ways to enumerate a substantially re-
duced set of possible states, and with reference to Figure 4.4, the three distinct
stages – (1) state-pruning, (2) combine and sort, (3) merge and truncate – involved
in the generation of particles at each time step are presented in the discussion that
follows.

State-pruning

The first stage involves a state-pruning procedure, where three criteria are utilised
for eliminating states that are unlikely or impossible. The first criterion being
the consideration of only states that correspond to at most three simultaneous
state transitions. The rationale is that it is unlikely to have more than three
appliances switching state simultaneously at a given time step, an observation
which is well reflected in Figure 4.5. Formally, this condition can be expressed as
dH(xt−1,xt) ≤ 3 where dH(xt−1,xt) denotes the Hamming distance between xt−1

and xt. Therefore, for the state of each mth parent particle, x̂(m)
t−1, only values of xt

with dH(x̂
(m)
t−1,xt) ≤ 3 need to be considered in the enumeration.

On top of the that, we also exploit the sparsity in the emission probability
factor to consider only possible states that satisfy the condition p(yt | xt) > ε,
where ε is the machine precision of a microprocessor. Figure 4.6 shows an instance
of this sparseness for one of the houses in the REDD dataset and highlights that
the number of possible states is substantially lower than the number of states
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Figure 4.4: An overview of the particle generation procedure. The notations in the figure
are explained in the main description of the algorithm.
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Figure 4.5: The proportion of occurrences for different number of simultaneous state tran-
sitions per time sample across the considered houses in the REDD dataset. The data used
has been downsampled by a factor of 3 to result in a sampling interval of approximately
10 seconds.
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inherent in the system, i.e. Msys =
∏K

k=1 Mk, with Mk being the number of states
for appliance k. This property can be attributed to the relatively small number of
states which are consistent with the constraint yt =

∑K
k=1 yt,k, an effect that can

be seen in Figure 4.7. Taking advantage of this allows computational cost to be
further reduced.

In a more general case however, the state-pruning need not be based on the
sparsity of the emission factor. If other factors can be easily computed and their
sparsity is high, they could be utilised for accelerating computation as well. One
such example specific to FVTHMM forms the third pruning criterion. It takes
advantage of the factorisation of p(xt | xt−1, ct−1), where the knowledge of any
single zero factor p(xt,k = jk | x̂(m)

t,k−1, ĉ
(m)
t−1,k) for a given mth particle enables any

state vector xt with the corresponding kth element being jk to be discarded. For
example, if we know that the probability of transitioning to state jk of appliance
k is 0 given certain values of (x̂

(m)
t,k−1, ĉ

(m)
t−1,k), then all system states xt whose kth

component is jk can be disregarded. This means, progressively, each realisation
of a zero factor allows the state space over the possible xt to be reduced by a factor
of M∗

k

M∗
k−1

, with M∗
k being the current count of possible values of xt,k.

By consolidating the aforementioned three criteria, the outcome of the state-
pruning procedure is a reduced set of possible states which each mth particle at
time t− 1 could transition to, i.e.

X(m) = {xt |dH(x
(m)
t−1,xt) ≤ 3 ∧

p(yt | xt) > ε ∧ p(xt,k | x(m)
t−1,k, c

(m)
t−1,k)∀k > 0}.

The cardinality of X(m) is Lt(m) = |X(m)|, and as the size of the reduced set is
very much smaller than the cardinality of the full state space, i.e. Lt(m) � Msys,
significant computational savings can be realised. Note that this pruning does
not require explicit testing of each of the Msys possible next states, but allows a
fairly efficient enumeration of X(m). Overall, this concludes the first stage of the
algorithm.

Combine and sort

In the second stage, the set of Lt(m) potential state candidates obtained previ-
ously are combined with their respective parent particles to form offspring parti-
cles. The process starts by taking each state candidate j and computing the score
that would result from the transition of the state associated with the mth parent
particle, x̂(m)

t−1, to j. This is followed by updating the counter vector of each nth
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Figure 4.6: The number of possible states for different values of observed aggregate
power consumption yt across time for a short segment from house 2 of the REDD dataset.
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Figure 4.7: The effect of the observed aggregate power consumption on the number of
possible states for house 2 of the REDD dataset. This is based on the emission probability
p(yt | xt).
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particle, ĉ(n)
t , according to (3.11). By repeating the calculation for each j and each

m, and by updating the reference to the parent particles, we obtain an intermedi-
ate list of particles Pt with length

∑Np(t−1)

m=1 Lt(m), as shown in Figure 4.4. Using
the computed score St, the particles are then sorted to result in P t.

Merge and truncate

Finally, using a Viterbi-like operation in the third stage, the
∑Np(t−1)

m=1 Lt(m) off-
spring particles are merged, keeping only the highest ranked particle for a given
augmented system state (xt, ct). This is made possible by the assumption in
FVTHMM that the current system state is only dependent on the previous aug-
mented system state (see Section 3.3.1 of Chapter 3). Therefore, much like the
Viterbi algorithm, only the best particle amongst those with the same (xt, ct)

needs to be kept. In the implementation, the merging is done via a hash-based
deduplication over the tuple (X t, Ct) using the MurmurHash3 algorithm [App16]
and the result is a reduced set of Np(t)′ particles.

At this point, if Np(t)′ exceeds the user-defined maximum number of particles
to keep at each time step, Np,max, the Np,max particles with the highest score are
retained. Otherwise, all of them are kept. The third stage marks the end of a
single round of the particle generation procedure shown in Figure 4.4. With the
arrival of a new power measurement at time t+1, the same procedure is repeated.
A functional overview of the algorithm is listed in Algorithm 1.

Backtracking

The method for generating new particles at each time step has been described.
To determine the most likely sequence of states up until the current time, back-
tracking is used, as in the Viterbi algorithm. This works by taking the state of
the best ranked particle at time T (i.e. X̃T (1)) and the corresponding reference
to the parent particle ψ̃T (1), then iteratively reading off the entry of the parent
particle’s state and its parent all the way back to t = 1 (see Line 26 to Line 31 of
Algorithm 1). The result is x̂1:T , the estimated state sequence as determined by
PBDT for a given observation sequence y1:T , a given set of model parameters λ
and a given Np,max.

However, backtracking need not be performed at the end of a batch of data;
it can be done on a continual basis. For example, in an actual set-up in a real-
world setting where measurements are continuously being sampled in real-time,
backtracking can be done on demand from a selected time slice, while the main
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Algorithm 1 Particle-Based Distribution Truncation

1: function PBDT(y1:T ,λ, Np,max)
2: for t← 1 to T do
3: n← 1
4: for m← 1 to Np(t− 1) do
5: i← X̃t−1(m)
6: τ ← C̃t−1(m)
7: X = {j | dH(i, j) ≤ 3 ∧

p(yt | xt = j) > 0 ∧
p(xt,k = jk | xt−1,k = ik, ct−1,k = τk)∀k > 0}

8: for all j ∈ X do
9: Update St(n) using (4.9)

10: ψt(n)←m
11: Xt(n)← j
12: Update Ct(n) based on ct using (3.11)
13: n← n+ 1
14: end for
15: end for
16: Pt← (Xt, ψt, Ct,St)
17: P t← SORT(Pt,St,′Desc′) . Sort Pt in descending order of St
18: P̃t← DEDUPLICATE(P t, (X t, Ct)) . Deduplicate P t over (X t, Ct)
19: if LENGTH(P̃t) > Np,max then
20: P̃t← P̃t(1 :Np,max)
21: Np(t)← Np,max

22: else
23: Np(t)← LENGTH(P̃t)
24: end if
25: end for
26: x̂T ← X̃T (1)
27: ψ̂T ← ψ̃T (1)
28: for t← T − 1 to 1 do
29: x̂t← X̃t(ψ̂t+1)
30: ψ̂t← ψ̃t(ψ̂t+1)
31: end for
32: return x̂1:T

33: end function
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particle generation procedure continues to process new samples as they come.
To provide some context in such a setting, we can consider an in-home display
unit (IHD) with a button that could be pressed by the user to switch from the dis-
play of the aggregate power consumption to the estimated appliance-level power
consumption as resulting from the tentatively most likely particle.

Although results from such preliminary backtracking are liable to change as
new data comes in, states sufficiently far in the past are not susceptible to this
change. We call the point from which change is guaranteed not to occur as the
fusion point. If we let Ψt = {m | m = ψ̃t(n)∀n ∈ {1, . . . , Np(t)}} and define for
some τ < t

Ψτ = {m | m = ψ̃τ (n), ∃n ∈ Ψτ+1},

then backtracking can be done automatically from the fusion point (t∗, n∗) such
that t∗ ∈ {τ ∗ | |Ψτ∗+1|= 1 ∧ τ ∗ < t} and n∗ ∈ Ψt∗+1. An example of such a fusion
point is shown in Figure 4.8, where it is noted that all particles at t = 6000 have
the first-rank particle (i.e. particle with the highest score) at t = 5608 as a common
ancestor. As it turns out, the concept of fusion point has been similarly explored
for the case of real-time Viterbi decoding in previous work [BR08].

5400 5500 5600 5700 5800 5900 6000
1

2

3

4

5

Figure 4.8: Every particle at t = 6000 has the first-rank particle at t = 5608 as a common
ancestor. Therefore, the fusion point is as indicated.
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Overall, the correctness of such a backtracking approach is validated by the
observation that no further measurements beyond t could change the fusion point
(i.e. new measurements do not change the common ancestor). Hence, x̂(n∗)

1:t∗ can be
taken as the final estimated state trajectory from the beginning of time to t∗. This
allows the memory utilised by particles of these times to be reused for storing
future particles, a process that is in some ways similar to the concept of garbage
collection in the computer science literature [WJNB95]. Additionally, reclaiming
memory is such a way is beneficial for the PBDT algorithm, considering that a
naive implementation of PBDT requires memory that is Ω(Np,maxT ), i.e. the re-
quired memory space grows at least proportionally with Np,maxT .

In the next subsection, we will discuss a few other important aspects of the
PBDT algorithm that should be considered from an implementation perspective.

4.3.2 Implementation Remarks

For the purpose of this research, the PBDT algorithm has been implemented as a
MATLAB function, with multiple subroutines written in C/C++ using the MEX1

API, for speeding up computations.
While the algorithm can be implemented as it is listed in Algorithm 1, we have

chosen to incorporate a number of additional computational optimisations at the
implementation level, following a few observations noted during the course of
the algorithm’s development. Exploiting these observations allows the enumer-
ations of the reduced set of possible states, the evaluations of the per-appliance
hazard function hxt−1,k

(·) and the computations of the emission probabilities p(yt |
x), all of which are needed as part of the score calculation in Line 9 of Algorithm 1,
to be shared across particles which are similar in some fundamental sense. This
eliminates redundant computations, enabling further speed improvements to be
realised.

Sharing the computation results of the hazard function

Recall that, in generating the particles for a new time step t given a list of particles
in the previous time step t−1 (i.e. parent particles), the algorithm has to compute
the score for Lt(m) new particles for each mth parent particle. With Np(t − 1)

parent particles, there would be
∑Np(t−1)

m=1 Lt(m) such computations, and in each

1MEX is a library and a set of application programming interfaces (API) provided by MATLAB
for calling compiled code written in C/C++. It is typically used for speeding up time-critical
operations.
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computation, the hazard function has to be evaluated once for each appliance k
so that the duration-dependent state transition probability p(xt | xt−1, ct−1) could
be calculated. This means, there are K ·

∑Np(t−1)

m=1 Lt(m) evaluations of the hazard
function at each time step. However, because the hazard function hxt−1,k

(ct−1,k)

is only dependent on both the state and dwell time of appliance k, the compu-
tation of hxt−1,k

(ct−1,k) can be shared across parent particles with the same aug-
mented device state (xt−1,k, ct−1,k), despite the uniqueness in the augmented total
system state (xt−1, ct−1) among all the parent particles (by virtue of Line 18 in
Algorithm 1).

In this way, groups of similar parent particles could be formed, allowing the
calculation of the hazard function hxt−1,k

(·) to be done only once for each group of
parent particles, and enabling the results of the calculation to be reused by parent
particles of the same group. If N (g)

p,G1
(t, k) is the number of such particles in group

g andNG1(t, k) is the number of different groups for a particular time t and device
k, then we have the constraints

1 ≤ NG1(t, k) ≤ Np(t), ∀t and ∀k (4.10)

NG1
(t,k)∑

g=1

N
(g)
p,G1

(t, k) = Np(t), ∀t and ∀k. (4.11)

The upper bound of the first constraint is met when (xt,k, ct,k) is unique across
all particles (i.e. there are as many groups as the number of particles at time t)
while the lower limit of 1 occurs when (xt,k, ct,k) is the same for all particles (i.e.
there is only one group). The second constraint is merely a natural fact that the
total number of particles across each group has to sum to Np(t). It is easily seen
that, when NG1(t, k) = 1, the highest speed-up occurs. Conversely, no speed-up
should be expected when NG1(t, k) = Np(t).

During the course of the algorithm’s development, situations with NG1(t, k) =

Np(t) were found to be rare and the grouping of particles is beneficial in re-
ducing the number of computations. As an illustrative example, consider Fig-
ure 4.9a, where it is shown that the number of groups NG1(t, k) for different
appliances is always less than Np(t), or in this case, Np,max of 100. In fact, be-
sides kitchen outlets1 and lighting, all the other appliances usually have
NG1(t, k) of 1. This means, for the hazard function calculation for each of these
appliances, only a single computation needs to be done in most cases.
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(a) The height of each segment of the area plot corresponds to the number of distinct
groups for a given chain/appliance.
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(b) The segment of aggregate data that the PBDT algoritm is applied to. The data is from
house 2 of the REDD dataset.

Figure 4.9: The number of distinct groups of particles with the same (xt,k, ct,k) at each
time step.
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Also illustrated in Figure 4.9 is how the observed aggregate power affects
the outcome of the grouping. Such variation may be attributed to the existence
of a dominant set of possible (xt,k, ct,k) over the observed y1:t. For cases with
many possible competing (xt,k, ct,k) that are more or less equally dominant, the
number of groups will be large, and as a result, the number of particles within
each group will be small. Interestingly, this can be seen as a certainty measure
of (xt,k, ct,k); if majority of the particles generated at a certain time step t have a
common (xt,k, ct,k), then there is a high confidence associated with the augmented
state estimates of appliance k. Otherwise, (xt,k, ct,k) among the particles are dis-
tributed more widely (i.e. large NG1(t, k)) and there is a lower confidence in each
of the estimates. Viewing in this way, it seems reasonable to devote more com-
putational resources when there are more competing estimates. The observation
that the sharing of computation results allows such dynamic usage of resources
is appealing and it is an important part of the implementation of PBDT.

In the actual implementation considered for this research, grouping is per-
formed before the start of the particle generation procedure at each time step.
More specifically, each mth particle at t − 1 is assigned to a group, by means of
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Figure 4.10: The grouping of parent particles and the precomputation of the hazard func-
tion values for each appliance k before the start of the particle generation procedure at
each time step.
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hashing the augmented device state of appliance k, (x̂
(m)
t−1,k, ĉ

(m)
t−1,k), and tagging

each particle with an identification number depending on which group it belongs
to (see Figure 4.10). Then, the hazard function corresponding to each group is pre-
computed and its result is stored into a secondary data structure to facilitate fast
lookup during the particle generation procedure. Compared to the unoptimised
implementation, which entails evaluating the hazard function K ·

∑Np(t−1)

m=1 Lt(m)

times, only
∑K

k=1NG1(t− 1, k) evaluations are needed with the sharing of compu-
tation results.

Sharing the enumeration of possible states and the emission probability calcu-
lations

In very much the same way as the sharing of computational results of the haz-
ard function discussed previously, the enumeration of possible states, X(m), for
each mth parent particle, and the corresponding emission probability calcula-
tions, p(yt | xt ∈ X(m)), can be shared across parent particles with the same xt−1.
This is because as described in Section 4.3.1, the outcome of the enumeration for
a given time step is only affected by the system state of the previous time step,
xt−1.

As such, parent particles with the same xt−1 can be grouped. For time t, each
group g has N (g)

p,G2
(t) particles and the total number of groups is NG2(t), which

altogether satisfy the constraints

1 ≤ NG2(t) ≤ Np(t) ∀t (4.12)

NG2
(t)∑

g=1

Np,G2(t) = Np(t) ∀t. (4.13)

Like before, the outcome of the grouping is affected by the observed aggregate
power and it determines the speed-up that could be obtained. A NG2(t) of 1
results in a highest speed-up, whereas no speed-up should be expected when
NG2(t) = Np(t).

In the implementation, a data structure shown in Figure 4.11 is maintained to
keep track of the group assignments, while a secondary data structure stores the
reduced set of possible xt, X(g), as arising from each group g of parent particles,
and the corresponding log(p(yt | xt)). Before the start of the particle generation
procedure at each time step, both data structures are updated with new precom-
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Figure 4.11: The precomputation of log(p(yt | xt)) for each enumerated set of possible
states common to group g.
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Figure 4.12: Comparison between the use of the precomputation scheme and without, in
terms of the time taken to process each sample shown in Figure 4.9b.
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puted values so that they can be looked up quickly later when new particles are
actually generated.

Speed improvements

Although there are computational overheads in grouping the particles, the adop-
tion of the aforementioned computational sharing schemes outweighs any such
overheads and offers great improvements in computational efficiency. For exam-
ple, when applying the PBDT algorithm to the data shown in Figure 4.9b, the time
taken to process each sample is on average 20 times lower than when no grouping
and precomputation were used. This comparison is illustrated in Figure 4.12.

4.3.3 Relationship to the Viterbi Algorithm

At the start of Section 4.3, we have remarked that the PBDT algorithm is an ap-
proximation to the Viterbi algorithm. Here, we show how this arises naturally by
considering a few conceptual similarities and differences between the former and
the latter. Then, we discuss the influence of Np,max in controlling the extent of the
approximation.

The merging step

The central part of the Viterbi algorithm is solving the Bellman equation [Bel03]
to find the most likely previous state for each possible current state. Given that
information, all other possible paths to each current state can be discarded. In
PBDT, this exact operation is performed in the merging step. To understand this,
consider one part of the trellis structure shown in Figure 4.13a. For any given
destination augmented state (j, q), there will be multiple originating states (i, p).
When presented with such a situation, the Viterbi algorithm records the selected
(i, p), owing to the Markov property over the transition from (xt−1, ct−1) to (xt, ct).
On the other hand, in the PBDT algorithm, each such transitions to (j, q) is rep-
resented by a particle. Thus, to exploit the Markov property in this case, only
the best particle amongst those with the same (xt, ct) is kept (see Figure 4.13b).
It is not difficult see that both the PBDT algorithm and the Viterbi algorithm are
equivalent in this regard.

In all, the Viterbi version may seem simpler, considering that no explicit merg-
ing is involved. However, the simple operation hinges on the existence of a trellis
structure. As this incurs a huge memory cost under FVTHMM, its creation is
infeasible in a practical setting. Moreover, the allocation of such a structure is
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tt – 1

(a) Selection of the best previous state
for a given destination state.

(b) As shown is the pre-merge sorted
list of particles. Among the particles
with the augmented state vector of
(j, q), only the one with the highest
score is kept.

Figure 4.13: Comparison between the PBDT algorithm and the Viterbi algorithm in terms
of the merging process.

wasteful due to the indirect constraints imposed by (3.11) on possible values of
ct. This, coupled with the fact that the counter values are only known during
runtime means the preallocation of the trellis structure as required by the Viterbi
algorithm is not only difficult but uneconomical, memory-wise.

Log likelihood of the estimated state sequence

By definition, the sequence of states estimated using the Viterbi algorithm is op-
timal under a given model since it corresponds to the solution of the maximum
likelihood problem. Given that the PBDT algorithm is an approximation method
for solving the same maximum likelihood problem, it is expected that the log
likelihood of the state sequence from the Viterbi algorithm, LVT

T , forms an upper
bound to the log likelihood of the state sequence estimated using PBDT, LPBDT

T .
However, if the number of particles to keep at each time time, Np,max, is suffi-
ciently large, we would expect the LPBDT

T to converge to LVT
T . This gives us the

following conjecture.

Conjecture 4.1: Let LPBDT
T be the log likelihood of the estimated state sequence

x̂PBDT
1:T from the PBDT algorithm and let LVT

T be the log likelihood of the estimated
state sequence x̂VT

1:T from the Viterbi algorithm. Then, LPBDT
T ≤ LVT

T , with decreas-
ing
∣∣LVT

T − LPBDT
T

∣∣ as Np,max is increased.
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The role of Np,max

Being the only parameter, Np,max controls the extent of the approximation inher-
ent to the PBDT algorithm. Using a small Np,max has the potential to truncate
away optimal states that would otherwise be considered by the Viterbi algo-
rithm. Therefore, Np,max plays a major role in determining LPBDT

T and the asso-
ciated x̂PBDT

1:T .

To investigate the influence of Np,max in practice, we apply both the Viterbi al-
gorithm for FHMM and the PBDT algorithm for FHMM to a segment of test data
from house 2 of the REDD dataset. The comparison using FVTHMM is not con-
sidered since the Viterbi algorithm is not computationally tractable under such
circumstances, as noted in Section 4.2. In the test, the PBDT algorithm is run from
Np,max = 1 to Np,max = 100, with incremental steps of 1. For each Np,max, the cor-
responding LPBDT

T is recorded. Also noted is the number of differences between
x̂PBDT

1:T and x̂VT
1:T for each round.
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Figure 4.14: Effects of the Np,max parameter on the log likelihood of the estimated se-
quence.
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Figure 4.15: Effects of the Np,max parameter on the differences in estimates between the
Viterbi algorithm and the PBDT algorithm.

The results of the test are presented in Figure 4.14 and Figure 4.15 respectively.
As can be seen, LPBDT

T converges to LVT
T as Np,max increases, while the number of

differences between x̂PBDT
1:T and x̂VT

1:T converges to zero. This is consistent with Con-
jecture 4.1 and the results not only validate the approximation nature of the PBDT
algorithm but also the algorithm’s natural convergence to the optimal solution2,
given a large enough Np,max. At least for the test data considered, the equality
between LPBDT

T and LVT
T happens at Np,max = 74, a value that is much lower than

the number of states intrinsic to house 2 of the REDD dataset (i.e. Msys = 4320).
However, this is not particularly surprising if we consider the state-pruning cri-
teria imposed by the PBDT algorithm in reducing the number of effective states.

Apart from the results and its aforementioned roles, one other interesting as-
pect of Np,max is its relation to the greediness of the algorithm. When Np,max = 1,
the PBDT algoritm reduces to a greedy algorithm as only the locally-optimal so-
lution at each time step is kept. In contrast, increasing Np,max away from 1 has

2A related later work by Lange and Bergés [LB16] (published in the late 2016 as alluded to
at the end of Section 4.1) also illustrated how their algorithm improves as more HMM paths
(analogous to Np,max in our case) are kept.
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the opposite effect. This culminates to the PBDT algorithm being a full dynamic
programming approach at the convergent point. Taken together, Np,max can be
interpreted as an inverse-greediness parameter and it can be chosen depending
on the available computational resources at hand.

4.4 Evaluation of Disaggregation Accuracy on Real-

world Data

A NILM algorithm is often judged by how well it is able to reconstruct the
appliance-level power consumption signal from the observed aggregate-level
measurements. In this section, we will evaluate the ability of our approach in
this regard by testing against a real-world dataset. We will also compare our
algorithm with other benchmark approaches to gauge its disaggregation perfor-
mance. All evaluations are done using MATLAB on a PC with an Intel Core
i7-4770 processor and 16 GB of RAM, while a graphical software application was
developed to facilitate the understanding of the estimates given by the PBDT al-
gorithm (see Appendix 2). However, before going into the experimental configu-
rations and the evaluations, we will first detail a few metrics that are pertinent to
disaggregation accuracies and the classification of errors.

4.4.1 Evaluation Metrics

For quantifying disaggregation accuracy, we will adopt the Correct Assign-
ment Rate (CAR) metric introduced by [KJ11] and used by [KDM+16, KDH+16,
MPB+16, JW13]. The metric can be defined as

CAR = 1−
∑T

t=1

∑K
k=1|ŷt,k − yt,k|

2
∑T

t=1 yt
, (4.14)

where ŷt,k and yt,k are the estimated power consumption and the actual power
consumption of the kth appliance at time t respectively.

In addition, we will also introduce a new metric based on the energy associ-
ated with the true positives (ETP), the false negatives (EFN) and the false positives
(EFP). Each of these has units of kilowatt-hour (kWh). For the kth appliance, they
are given as

ETP,k =

∫ T

0

min(ŷt,k, yt,k)dt (4.15)
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EFN,k = E∗k − ETP,k (4.16)

EFP,k = Êk − ETP,k, (4.17)

where E∗k denotes the actual energy consumed by the kth appliance and Êk refers
to the estimated energy consumed by the kth appliance.

4.4.2 Classification of Errors

Apart from the emphasis on disaggregation accuracy, it is also important to con-
sider potential causes of errors in state estimations. This is especially beneficial in
the case of the PBDT algorithm as errors can be a result of approximations due to
truncations or due to simplifications in the model itself.

However, before introducing a new metric to quantify the nature of errors,
let us first introduce a few definitions. If we denote the true state vector at time
τ and the estimated state vector at time τ to be x∗τ and x̂τ respectively, then an
error is an event when x̂τ 6= x∗τ . By extension, an error segment can be defined
as a sequence of consecutive errors delimited by times with no errors. This is
illustrated in Figure 4.16 where x̂t1:t2 6= x∗t1:t2

.

Now, to better understand the errors, we will introduce a new metric, the
Cumulative Error Log Likehood Ratio (CELLR). For the error segment shown in

Figure 4.16: An error segment.
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Figure 4.16, the metric can be defined as

CELLR = log

(
p(x̂t1:t2+1, yt1:t2+1 | x̂1:t1−1, ĉ1:t1−1, y1:t1−1)

p(x∗t1:t2+1, yt1:t2+1 | x∗1:t1−1, c
∗
1:t1−1, y1:t1−1)

)

=

t2+1∑
τ=t1

log

(
p(x̂τ | x̂τ−1, ĉτ−1)p(yτ | x̂τ )
p(x∗τ | x∗τ−1, c

∗
τ−1)p(yτ | x∗τ )

)
,

(4.18)

where the denominator in the log function signifies the probability of assigning
the true state vectors over an error segment given the assignments prior to the on-
set of the error, while the corresponding numerator denotes that of the estimates
from the algorithm. A positive CELLR for a given error segment implies model-
induced errors, whereas a negative CELLR suggests that the errors are not due to
the model. In this context, model-induced errors could refer to errors owing to
modelling assumptions such as the assumption of a Gaussian distribution for the
data or other assumptions that do not reflect reality.

The basis of this error classification rule leverages two facts. Firstly, the es-
timated state sequence resulting from arg maxx1:T ,c1:T

p(x1:T , y1:T , c1:T ) is by def-
inition the optimal state sequence under the model used. If the optimal state
sequence is different from the actual state sequence and the actual state sequence
has a lower log likelihood value than that of the optimal state sequence, it is
deemed that the model used for the optimisation does not sufficiently capture
the behaviour of the dynamical system under consideration.

Secondly, by definition, the log likelihood of the optimal state sequence forms
an upper bound to the log likelihood of the state sequence estimated using the
PBDT algorithm. In the event that the log likelihood of the actual state sequence
is still lower than that of the potentially suboptimal state sequence from the PBDT
algorithm, then the conclusion that follows from the first fact continues to hold.
On the other hand, for the inverse case, we can say with high confidence that the
model is not the primary cause for errors. In fact, they may very well be attributed
to the suboptimal optimisation as part of the PBDT algorithm, owing perhaps
to the use of the lower-than-required Np,max. Taken together, it is this interplay
between the aforementioned two facts that the basis for the CELLR metric and
the associated error classification rule is founded upon.

For quantifying model-induced errors at a deeper level, let us also consider
two additional metrics based on the decomposition of CELLR, such that

CELLR = CELLRe + CELLRd, (4.19)
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where CELLRe and CELLRd are the Cumulative Error Log Likelihood Ratio for
the emission model and the state duration model, respectively. For the hypothet-
ical error segment shown in Figure 4.16, they are each given as

CELLRe =

t2+1∑
τ=t1

log

(
p(yτ | x̂τ )
p(yτ | x∗τ )

)
(4.20)

CELLRd =

t2+1∑
τ=t1

log

(
p(x̂τ | x̂τ−1, ĉτ−1)

p(x∗τ | x∗τ−1, c
∗
τ−1)

)
. (4.21)

Both CELLRe and CELLRd consider the log likelihood value of the actual state
sequence (within an error segment) that would have been assigned by the emis-
sion model and the state duration model alone. Therefore, in a similar vein to the
error classification rule of the CELLR metric, we can say that a positive CELLRe

and a negative CELLRd signify that a given error segment is likely to be caused
by the emission model as opposed to the state duration model or vice versa.
However, unlike the case for CELLR, caution should be taken when making at-
tributions because in performing state estimation, both the log likelihood for the
emission model and the state duration model contribute to the overall likelihood.
Unless it is clear that one is more dominant than the other, it is difficult to fully
ascertain the cause by using these two metrics alone. Nevertheless, the use of all
three metrics – CELLR, CELLRe and CELLRd – together would provide a greater
insight on the nature of errors that might occur in the disaggregation of the real-
world aggregate-level data. Thus, they will be used in part for explaining the
results in the sections that follow.

4.4.3 REDD Dataset

To evaluate how well the PBDT algorithm with FVTHMM (FVTHMM-PBDT)
performs in the context of real-world data, we have chosen to use the publicly
available REDD dataset [KJ11]. The primary reasons are, the REDD dataset is
widely regarded by the NILM community as the de facto dataset for benchmark-
ing NILM algorithms (used by [JW13, PGWR12, SLS14, Zei12, KDM+16, ES15,
EBE15], among others), and a common reference dataset facilitates the compari-
son of different methods, whether those developed in the past or those that will
be developed as part of any future work.

As a whole, the dataset consists of power data collected from 6 houses in the
Greater Boston area for a period of up to nearly two months. For each house, the
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aggregate power consumption data and the appliance-level power measurements
are metered at time granularity of seconds. This is in addition to the provided
aggregate-level high-frequency voltage and current signals, each sampled at a
rate of 15kHz. However, we will not consider the latter as our work primarily
focuses on the disaggregation of data representative of those that can be obtained
from smart meters.

4.4.4 Experimental Configuration

In the evaluation, house 1, 2, 3, 4 and 6 in the REDD dataset are all considered
for validating the robustness and scalability of our approach. House 5 is notably
not used, given that it contains too many days of missing data (see Figure 4.17).
Incidentally, this view is also shared by [FRA13] and [ES15] among others.
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Figure 4.17: The duration of submetered data for each house in the REDD dataset. Times
with no data are likely due to data transmission loss or the collection hardware being
turned off inadvertently.
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For each of the houses considered, there exist some appliances that were not
turned ON predominantly during the monitoring period. As these appliances do
not have sufficient ON-state data to be included in the analysis, they are removed
from consideration. A summary of the appliances in question is presented in
Table 4.1.

The aggregate data used for testing is constructed by summing up all the con-
tributions of the involved submeter measurements. Then, they are downsampled
by a factor of 3 by discarding every other sample. The result is data with a sam-
pling interval of approximately 9 seconds, up from an original of 3. In the test, the
aggregated data taken from the time interval shown in Figure 4.18 is treated as
the test set, while data outside this range is used as part of the training stage for
building appliance models. The missing data in the dataset is disregarded from
disaggregation.

Figure 4.18: A detailed overview of the submetered time span of the REDD dataset. Sec-
tions with data, sections with missing data and sections used for testing are as indicated.
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Table 4.1: Appliances in the REDD dataset.

Submeter Label House
1 2 3 4 6

air conditioning1
air conditioning2
air conditioning3

bathroom gfi
bathroom gfi1
bathroom gfi2

dishwasher
disposal

electric heat
electronics

furnace
kitchen outlets1
kitchen outlets2
kitchen outlets3
kitchen outlets4

lighting
lighting1
lighting2
lighting3
lighting4
lighting5

microwave
miscellaneous

outlets unknown
outlets unknown1
outlets unknown2
outlets unknown3

oven1
oven2

refrigerator
smoke alarms

stove
washer dryer

washer dryer1
washer dryer2
washer dryer3

In house # and considered

In house # but never turned on

Not in house #

Key:
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Note that the aggregate-level measurements made available in the REDD
dataset is not used for testing. This is driven by the less-documented issue of
the data not actually being in real power quantities but rather in apparent power
[BDS13, Zei12]. This mismatch in units between the aggregate data and the sub-
meter data necessitates an ad-hoc preprocessing phase to convert the submeter
data into apparent power quantities before training can be done to obtain the ap-
pliance models [BDS13]. In our view, such an act for dealing with the mismatch
is not exactly accurate as power factor is required for the conversion between
real power and apparent power, but it is not made available. With that, and to
have a consistent validation of the estimated real power against the unprocessed
submeter ground truth in the dataset, we have thus chosen to disregard the ag-
gregate apparent power and instead, derive the test aggregate real power data
as essentially the sum of the all the submeter data. Admittedly, this would im-
pose the assumption that none of the test aggregate real power is contributed by
unmetered appliances. However, we note that this is not an impediment to the
evaluation of the methods considered. The core objective of disaggregation is still
being tested but with the assumption that models of all appliances could be ob-
tained. In Chapter 5, we take note of any deviation from the latter and propose a
more robust extension to the techniques developed in this chapter.

4.4.5 Algorithm Configuration

The algorithms that will be considered in the comparison are

• PBDT with FVTHMM (FVTHMM-PBDT)

• PBDT with FHMM (FHMM-PBDT)

• Particle Filter with FVTHMM (FVTHMM-PF)

• Particle Filter with FHMM (FHMM-PF), a recent work by Egarter et al.
[EBE15].

The Viterbi algorithm with FHMM (FHMM-Viterbi) will only be tested on house
2 of the REDD dataset since the number of states involved is only computation-
ally tractable for this case. For all the other houses, the use of FHMM-Viterbi
is intractable and the performance of FHMM-Viterbi can be taken to be close to
FHMM-PBDT by virtue of Conjecture 4.1. The same can be said for FVTHMM-
Viterbi in all cases. In the experiments, all particle-based algorithms will be con-
figured to use a Np,max of 100.
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PF-specific configuration

Recall from Section 2.6.2 that an important aspect of particle filters is in the selec-
tion of the proposal distribution to sample from. In the comparison, we will use

q(x1:t) = p(x1)
t∏

τ=1

p(xτ | x1:τ−1, yτ ) (4.22)

with samples being drawn incrementally from p(xt | x1:t−1, yt) at each time step.
This proposal distribution has a corresponding weight function of

w(x1:t) =
t∏

τ=1

p(yτ | x1:τ−1) (4.23)

and it will be used for resampling when the Effective Sample Size (ESS) criterion
[DJ08] drops below 50.

4.4.6 Results and Discussion

Figure 4.19 shows a comparison between the methods considered in the exper-
iment. Recall that, due to computational intractability, FHMM-Viterbi is only
applied to house 2 of the REDD dataset. This is reflected in Figure 4.19 where
bar graphs denoting the CAR metric of FHMM-Viterbi are omitted for all houses
except for house 2. The same can be said for Table 4.2.

Table 4.2: CAR of different methods when applied to the REDD dataset.

CAR Metric

Methods House Average1 2 3 4 6
FVTHMM-PBDT 76.96% 82.87% 80.59% 64.47% 78.63% 76.70%
FHMM-PBDT 58.51% 67.34% 78.73% 46.24% 62.53% 62.71%
FVTHMM-PF 69.26% 84.00% 62.72% 62.14% 69.32% 69.49%
FHMM-PF [EBE15] 54.22% 82.73% 61.96% 57.10% 68.23% 64.85%
FHMM-Viterbi N/A 67.34% N/A N/A N/A N/A

Overall, our proposed method (i.e. FVTHMM-PBDT) performs consistently
well, recording the highest average CAR (i.e. 77%) among others. The biggest
gain comes from the comparison against FHMM-PF in house 1, achieving a 22%
improvement in disaggregation accuracy. Visual differences of the disaggregation
results for a day’s worth of data from house 1 is shown in Figure 4.20.
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Figure 4.19: Disaggregation accuracy of different methods when applied to the REDD
dataset.

However, for house 2, FVTHMM-PF is found to be marginally better than
FVTHMM-PBDT. A close inspection reveals a number of reasons. First, house 2
has the least number of submeters and the lowest Msys among all houses. There-
fore, for any given xt, the corresponding yt has a lower variance on average. Con-
sequently, the likelihood p(yt | xt) is more peaky, and sampling incrementally
from the proposal distribution of PF, p(xt | x1:t−1, yt), is more likely to give xt

that is locally optimal for a given time slice but not optimal over a range of ob-
servation sequence. This scenario is evident in Figure 4.21 where the estimated
state sequence arising from FVTHMM-PF turns out to have a lower log likeli-
hood than that of FVTHMM-PBDT, even though the former’s estimate is closer
to the true state sequence on average. Secondly, as can be seen in Figure 4.22,
the state estimates from FVTHMM-PBDT have noticeably higher false negatives
for lighting and higher false positives for refrigerator, in comparison to
FVTHMM-PF. The discussion that follows highlights all the other interesting re-
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(a) The ground truth for a day’s worth of data from house 1 of the REDD
dataset.

(b) Estimated using FVTHMM-PBDT

(c) Estimated using FHMM-PF [EBE15]

Figure 4.20: Comparison between FVTHMM-PBDT and FHMM-PF in disaggregating one
day’s worth of data from house 1 of the REDD dataset.
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Figure 4.21: Log likelihood of the estimated state sequence for all test sets considered.

sults from the experiments. Subsequent to this, a summary of the cause of disag-
gregation errors and ways to rectify them are provided.

Similarities between FHMM-PBDT and FHMM-Viterbi

In house 2, both FHMM-PBDT and FHMM-Viterbi have exactly the same disag-
gregation accuracy and the same estimated states, further confirming the previ-
ous claim that the PBDT algorithm is able to find the optimal x̂1:T when given a
large enough Np,max. While this also shows that a Np,max of 100 is clearly sufficient
for the case of house 2 with FHMM, a higher Np,max is expected to be required
for all other cases, especially methods utilising the FVTHMM model and houses
with a large Msys.
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Figure 4.22: The energy associated with the true positives, the false negatives and the
false positives for the test set of house 2.

Dishwasher problem of FVTHMM in house 2

As can be seen in Figure 4.22, regardless of the state estimation algorithm used
under FVTHMM, the dishwasher in house 2 has high false negatives. The dish-
washer is being misclassified as other appliances most of the time. An example of
this is shown in Figure 4.23 where the dishwasher is supposed to be detected as
being turned ON at t = 33203. Further analysis reveals a number of interrelated
factors giving rise to this.

First, it was found that none of the Np,max particles at one time step before the
dishwasher is turned ON (i.e. t = 33202) has the correct counter values; they all
have ct−1,diswasher of 7376 instead of the true value of 20654. Therefore, regardless
of the parent particles, this causes the corresponding duration-dependent state
transition probability and by extension, the score of all generated particles with
the correct dishwasher state to be low, given that it is not likely for a dishwasher to
be turned on after only being turned off for 7376 time steps (see Figure 4.24). The
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(a) The ground truth for a segment of data from house 2 of the REDD dataset.

(b) The same segment but with estimates from FVTHMM-PBDT.

Figure 4.23: Misclassification of dishwasher.
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Figure 4.24: State duration distribution associated with the OFF-state of the dishwasher
of house 2.

fact that all of the parent particles have counter values of 7376 suggests that the
dishwasher is mistakenly detected to be ON at t = 25826. Figure 4.25 illustrates
that this is indeed the case.

It turns out that the wrong state inference at t = 25826 is caused by a spu-
rious observation (i.e. the power consumption deviates from what the model
expects), leading to the case where both the stove and dishwasher are being er-
roneously assigned to the wrong state. If we consider the ground truth signal for
the segment shown in Figure 4.25a, it can be seen that one of the pulses belonging
to kitchen outlets2 is lower than usual, taking the value of about 670W. As
the kitchen outlets2 is only modelled using two states with mean powers of
about 0W and 1000W, the likelihood of observing such a value is extremely low.
In fact, it is entirely reasonable to think that such an observation is not actually
part of the operation of the kitchen outlets2. The spurious observation could
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(a) The ground truth for a segment of data from house 2 of the REDD dataset.

(b) The same segment but with estimates from FVTHMM-PBDT.

Figure 4.25: Misclassification of kitchen outlets2



Page 127

merely be an artefact of the sampling process where the value between transition
from one state to another happened to be sampled before the transition is com-
pleted. The rare occurrence of observing this value in the kitchen outlets2

data supports this hypothesis.

Given that the pulses are almost periodic, one might expect the state duration
part of the model to come in play so as to regulate the score of the true particle at
t = 25826 from dropping too much. However, because the spurious observation
falls in the tail of the Gaussian distributions corresponding to the two states of
kitchen outlets2 and thus, able to influence more of the overall score of the
particle with the true kitchen outlets2 state, a more likely but wrong state is
given a higher score under the model.

Judging from all of this, it may seem that the misclassification of
kitchen outlets2 at t = 25826 is largely responsible for the misclassification
of dishwasher at t = 33203. To test whether this is true, we forced the counter
value of the dishwasher just before it is actually turned on to its true value. Then,
the disaggregation is resumed as it is. It turns out that after doing so, the dish-
washer is now being correctly inferred to be ON at t = 33203. This is shown in
Figure 4.26, validating our claim that the misclassification of the dishwasher is
indeed due to the spurious observation at an earlier time step. In addition, when

Figure 4.26: The estimated power after forcing the counter of the dishwasher to be the
correct value, disregarding the effect of the spurious observation.
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the dishwasher counter value is enforced, the CAR metric of house 2 increases to
86.91%, surpassing that of the FVTHMM-PF and the original CAR.

Also interesting is the observation that the CELLR of the error segment with
the misclassified pulse has a positive value of +600.0, while the CELLRe and
CELLRd for the same error segment are +624.3 and -24.23 respectively. All
three CELLR metrics give credence to the claim that the error is model-induced,
with both the CELLRe metric and the CELLRd metric confirming the emis-
sion model’s inability to account for the spurious observation associated with
kitchen outlets2.

Refrigerator transient problem

A common trend across all houses considered is the misclassification that hap-
pens at the onset of the refrigerator’s ON cycle. As an illustrative example, Fig-
ure 4.27b depicts the situation in house 1 where the power surge at the onset
causes not just the refrigerator to be detected but also lighting1. This is
largely attributed to the transient behaviour of the refrigerator not being taken
into account by the refrigerator’s emission model.

The empirical cumulative distribution functions (ECDF) of all CELLR metrics
at segments where such errors occured are presented in Figure 4.28, Figure 4.29
and Figure 4.30. Only about 10% of the CELLR values are negative, strongly
indicating that the errors are predominantly due to the shortcomings of the model
used for state estimation instead of the particle truncation operation that is part
of the PBDT algorithm.

Note also that 100% of the CELLRe values are positive while about 90% of
the CELLRd values are negative. Together, these point to the insufficiency of the
emission model being largely responsible for the errors.

Poor disaggregation accuracy for all algorithms in house 4

Although Table 4.2 shows that the proposed method, FVTHMM-PBDT, outper-
forms the other methods in house 4, all algorithms have CAR values below 65%.
The main reason for this is that appliances of house 4 appear to have large fluc-
tuations on average and some of them do not conform well to the piece-wise
constant model. This suggests that it is more challenging for the emission model
to represent the varying power consumption for a given state more accurately.

An initial investigation reveals that the average number of states across all 11
submeters in house 4 is 5.36, which is the largest among all the other houses. It
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(a) The ground truth for a segment of data from house 1 of the REDD dataset.

(b) The same segment but with estimates from FVTHMM-PBDT.

Figure 4.27: A depiction of the refrigerator transient problem.
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Figure 4.28: ECDF of CELLR for errors relating to the refrigerator transient problem in
house 1 of the REDD dataset.
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Figure 4.29: ECDF of CELLRe for errors relating to the refrigerator transient problem in
house 1 of the REDD dataset.
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Figure 4.30: ECDF of CELLRd for errors relating to the refrigerator transient problem in
house 1 of the REDD dataset.
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Figure 4.31: Emission model for lighting4 of house 4 in the REDD dataset

was also found that there are 8 submeters (out of 11) having 5 or more states,
meaning 73% of all submeters in house 4. In contrast, both house 1 and house 2
only have 14% of their submeters, while house 3 and house 6 have 41% and 62%
respectively.

The high number of states used to model the majority of the appliances in
house 4 can be attributed to the inherently large number of peaks in the power
histogram of each appliance. Also, the lack of clearly defined peaks in certain
histograms makes fitting the right emission model difficult. This can be seen in
Figure 4.31 where the histogram of lighting4 is illustrated.

In short, while FVTHMM-PBDT still leads the other methods, the high num-
ber of states and the inaccuracies in modelling the power consumption play a
major part in the overall low disaggregation performance of house 4.
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Summary

From the results presented thus far, the overarching theme appears to be that
majority of the errors can be traced back to inaccuracies of the appliance emission
models. There are a few ways to rectify this.

The first approach is to incorporate a more complex emission model which
is able to more accurately account for the transient behaviours and the observed
aggregate measurements that are not exactly piece-wise constant in nature. A
specific instance of this will be briefly explored in Section 4.5.

Optionally, we can also include a preprocessing phase so that only steady-state
power segments are extracted for disaggregation. The processed signal would
be cleaner in the sense that the fluctuations are even out, allowing the PBDT al-
gorithm to perform better. This will be discussed as part of the robustification
extension in the next chapter.

Yet another way is to add an outlier detection to disregard spurious observa-
tions, preventing disaggregation of such values from propagating errors forward
and subsequently affecting inferences of states negatively.

4.4.7 Empirical Analysis on Time Complexity

Apart from the disaggregation accuracy discussed in the previous subsection, the
time complexity of the proposed method is also explored. We begin by inves-
tigating the relationship between the maximum number of particles to keep at
each time step, Np,max, and the runtime of FVTHMM-PBDT, before studying the
variation of its runtime with the number of possible system states, Msys, and the
number of appliances, K. The discussion that follows presents the outcome in
these two aspects.

Runtime vs Np,max

To investigate the valueNp,max and how it affects the runtime of FVTHMM-PBDT,
the aggregate data from house 2 is disaggregated with Np,max of 1 and then from
10 to 100 in increments of 10. The associated runtime for each Np,max is recorded.

Shown in Figure 4.32 is the effect of Np,max on the runtime of the algorithm.
The figure illustrates that for a fixed Msys and a fixed T of 50000, the runtime
increases linearly with Np,max. This is consistent with the theoretical worst-case
time complexity of O(MsysNp,maxT ).
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Figure 4.32: Runtime of FVTHMM-PBDT vs Np,max.

Runtime vs Msys and K

In this test, we explore the role of Msys and K in influencing the runtime of the
algorithm. All houses considered for the analysis thus far are included for the
investigation except for house 2, given that it only contains a very small number
of appliances. To vary the value of Msys for each house, we select K submeters
out of Kmax. As there are

(
Kmax
K

)
combinations of K submeters, only the one that

results in the largest Msys is chosen. The power consumption of the chosen K

submeters are then added together to form the test aggregate measurements that
will be disaggregated via FVTHMM-PBDT with Np,max of 100. We perform the
experiment using K from 1 to Kmax, and the runtime for each K and the resulting
Msys is noted.

The results are summarised in Figure 4.33 and Figure 4.34, where it is shown
that the algorithm runtime appears to increase approximately logarithmically
with Msys and approximately linearly with the number of appliances/submeters,
K. Clearly, this is a marked improvement over the theoretical worst-case time
complexity of a naive implementation of PBDT (i.e. O(MKNp,maxT ) if each appli-
ance has M states) and the theoretical time complexity of the Viterbi algorithm
under FVTHMM (i.e. O(M2KT 2K+1)), thus demonstrating the effectiveness of the
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Figure 4.33: Runtime of FVTHMM-PBDT vs Msys.
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Figure 4.34: Runtime of FVTHMM-PBDT vs K.
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state-pruning stage detailed in Section 4.3.1 and the computation-sharing scheme
described in Section 4.3.2. The former partially decouples the number of system
states to consider from the actualMsys while the latter reduces the number of com-
putations as arising from each parent particle by sharing the calculation within a
group. In most cases, the distribution of the particles at each time step is easily
exploitable for computation-sharing and the speed-up as a result of this can be
substantial.

The different gradients of the runtime curve for different houses as shown
in both figures might be due to the nature of how the appliances contributes to
the aggregate measurements in each house. As noted in the preceding subsec-
tion, house 4 in particular has appliances with less well-defined power levels that
are more challenging to model. Consequently, there may be more uncertainty in
each of the particles’ estimate and computations are more difficult to be shared
across particles, resulting in a runtime that increases more as K grows. In con-
trast, the appliances in house 1 are simpler to model since they have more distinc-
tive power levels. As such, it may be easier for the algorithm to group particles
for computation-sharing given a particular observed aggregate measurement.

The figures also highlight that, in a system with on the order of 2 million states
(i.e. house 1), the time needed to process 50000 samples is only about 4600 sec-
onds (even in an interpreted language like MATLAB). On average, this means
the time needed to process each sample is 0.092 seconds, resulting in an average
throughput of 10.87 samples/s. As the samples are approximately 10 seconds
apart, FVTHMM-PBDT is able to process faster than the rate at which new mea-
surements arrive, thereby, supporting the claim that the proposed method is able
to meet the demands of real-time computation for the purpose of NILM.

Adding to that is the observation that house 3 has 20 billion states and it takes
the FVTHMM-PBDT method 35213 seconds to process 50000 samples. Although
the increase in runtime over that of house 1 is expected, the average throughput
of 1.42 samples/s is still beyond the minimum required throughput for achieving
real-time computation. Moreover, it illustrates that increasing the cardinality of
the system states by a factor of 10000 only penalises the average throughput by
a relatively small factor of 7. Therefore, the PBDT algorithm can be considered a
scalable method of inferring the hidden states of appliances, even when Msys is
large.

For even greater speed improvements, the computationally independent rela-
tionship between the particles at each time step could be exploited to enable par-
allel executions of computations on a graphics processing unit (GPU) or a field-
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programmable gate array (FPGA). However, such implementations are beyond
the scope of this research and they can be conducted as part of any future work
in the same direction.

4.4.8 Sensitivity Study on Sampling Intervals

The preceding experiments have all been done on data of sampling intervals of
approximately 10 seconds. Considering that power measurements can arrived at
different rates depending on the instrumentation hardware (e.g. smart meters),
it is interesting to investigate the impact of different sampling intervals can have
on the disaggregation accuracy of the proposed FVTHMM-PBDT.

To that end, we downsampled the original data from house 1 of the REDD
dataset by different factors to simulate sampling intervals of 30 seconds, 60 sec-
onds, 300 seconds and 900 seconds, then re-run FVTHMM-PBDT with Np,max of
100 for each of the different sampling intervals, while noting the resulting disag-
gregation accuracy during each run.

The outcome is shown in Figure 4.35. As can be seen, the CAR increases to a
peak of 86% at 60 seconds before decreasing gradually as the sampling interval
increases. The initial increase can be explained by the reduction in disaggregation
errors as the transient effects are removed due to higher sampling intervals, while
the subsequent decrease can be attributed to the increased likelihood of discard-
ing samples that are important for the algorithm to make the right inferences.

Although this preliminary result appears to show that the proposed method
is able to maintain high disaggregation accuracy up to sampling intervals of 900
seconds, more experimental results from other houses need to be obtained for a
more definitive conclusion to be drawn. That said, it is a promising outcome.

4.5 PBDT with Segmental FVTHMM

We have seen in the previous section that one of the main contributors to state
estimation errors is the inaccuracies of the appliance emission model. To that end,
we will give a brief treatment of an augmented form of FVTHMM. Specifically,
the appliance power is modelled to be dependent not just on its state but also on
its counter value, i.e. p(yt,k | xt,k, ct,k). The advantage is, it allows the decaying
or the rising power consumption for a given appliance state to be represented
naturally. While this representation has never been used for NILM before, it is
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Figure 4.35: The impact of different data sampling intervals on the disaggregation accu-
racy of FVTHMM-PBDT. The result is obtained by applying the algorithm on house 1 of
the REDD dataset.

closely related to the segmental hidden Markov model applied to other domains
like speech modelling [KM91, Rus93, GY93].

Given the use of counter variables, the dependence of the power consump-
tion on the dwell time is a natural and straightforward addition to FVTHMM,
whereas such extensions are difficult to be made for the explicit-duration for-
mulation of the hidden semi-Markov model as used by Kim et al. [KAL11] and
Johnson and Willsky [JW13] for NILM, since the state duration distributions are
directly employed in their work without the notion of time-varying duration-
dependent quantities like in the variable-transition formulation, i.e. VTHMM.

In this section, the augmented model is formally described and only a short
proof-of-concept is presented for demonstrating its successful application to re-
solve the transient issues associated with the operation of refrigerators. There is
much scope for more work be done for exploring the best form of the segmental
emission model p(yt | xt, ct). In the future, it is also hoped that the model be
tested against a wider range of data to better evaluate its robustness.
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4.5.1 Model Description

The model is similar to the original FVTHMM described in Section 3.3.1 of Chap-
ter 3, except that the emission variable yt is also now conditionally dependent on
a vector of counters. Formally, the joint probability over all the random variables
is

p(x1:T , y1:T , c1:T ) = p(x1)p(c1)
T∏
t=1

p(yt | xt, ct)

×
T∏
r=2

p(xr | xr−1, cr−1)p(ct | xr, cr−1,xr−1),

(4.24)

while its recursive form is

p(x1:t, y1:t, c1:t) = p(x1:t−1, y1:t−1, c1:t−1)p(yt | xt, ct)

× p(xt | xt−1, ct−1)p(ct | xt, ct−1,xt−1).
(4.25)

The dynamic Bayesian network (DBN) representation, illustrated in Figure 4.36,
summarises the conditional independence assumptions of the model, with the
directed connections between yt and ct,k shown to make the dependence explicit.

With consideration of the gradual decrease in appliance power shown in Fig-
ure 4.37, we have chosen to use the exponential relation linking the power con-
sumption of appliance k at time t, yt,k, to its counter ct,k and its state xt,k. That is,

y
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y
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y
t-1

y
t

•   •   •   •

•   •   •   •

•   •   •   •

k = 1,…,K

x1,k x2,k xt-1,k xt,k

c1,k c2,k ct-1,k ct,k

Figure 4.36: Dynamic Bayesian network representation of the Segmental FVTHMM.
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Figure 4.37: An example of the gradual decay in power consumption.

for a given state xt,k = i and a given counter value ct,k = τ ,

yt,k = ai exp(−biτ) + µi︸ ︷︷ ︸
fk(i,τ)

+nk(i), (4.26)

where nk(i) is the state-dependent noise term assumed to be distributed accord-
ing to a zero-mean Gaussian distribution like before; fk(i, τ) is the deterministic
part of the power consumption that is a function of both the appliance state and
the dwell time; ai, bi and µi denote the parameters that should be fitted. Other
forms of fk(i, τ) could be used, and the noise term could also be a function of the
dwell time. However, they are not considered for our demonstration; they are
reserved for future work.

With the relation specified in (4.26), the power consumption of appliance k at
time t is a random process characterised by

yt,k | xt,k, ct,k ∼ N (axt,k exp(−bxt,kct,k) + µxt,k , σ
2
xt,k

). (4.27)

In this way, for a fixed xt,k, the mean power consumption is said to vary exponen-
tially with ct,k while µxt,k acts as a bias term which corresponds to the mean of the
non-segmental version if axt,k is 0. As the noise term in (4.26) is independent of
the counter, the variance is constant.

Now, if we assume that yt,k is not observable and only the aggregate power
consumption, yt, could be measured, the overall process becomes

yt | xt, ct ∼ N

 K∑
k=1

axt,k exp(−bxt,kct,k) + µxt,k ,

K∑
k=1

σ2
xt,k

 . (4.28)
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4.5.2 Parameter Estimation

In this subsection, the method used for inferring the parameters, ai and bi, of the
segmental emission model is outlined. The techniques used for estimating the
parameters related to the state transition and the state duration are not presented
in the following discussion, since they are exactly the same as those described in
Chapter 3.

To determine the parameters for a given state xt,k = i, the power data of appli-
ance k from the training set, y1:T,k, is first segmented via the segmental k-means
algorithm detailed in Section 3.4.2 of Chapter 3 to obtain the estimated state se-
quence, x̂1:T,k. Then, the power values corresponding to blocks or segments of
consecutive i in x̂1:T,k are extracted; if there are S segments, they are denoted by
{y(us:vs),k}Ss=1, where us and vs signify the starting index and the ending index of
segment s respectively, with the underlying states satisfying xus,k = xus+1,k =

. . . = xvs−1,k = xvs,k = i for all s ∈ [1, S].

Next, all extracted segments are aligned such that their starting indices coin-
cide, giving rise to a set of data points for each counter value, i.e. {yus,k}Ss=1 for
τ = 1, {yus+1,k}Ss=1 for τ = 2 and so on. From this, fk(i, τ) is estimated as the
mean of yus+τ−1,k for a given τ , i.e. f̄k(i, τ) =

∑S
s=1 yus+τ−1,k/S, before their com-

puted values and their variation across τ are fitted using regression analysis. In
the process, the parameters ai, bi and µi are obtained.

As mentioned before, the variation of the variance across a segment is not
incorporated. Therefore, we use the same variance as obtained using the tech-
niques from Chapter 3. Exploring the impact of allowing the variance to vary is a
promising direction for future work.

4.5.3 Segmental Modelling: An Example

As an example to the previous discussion, we will consider using the refrigerator
from house 2 of the REDD dataset. Figure 4.38 illustrates its power consumption
for one particular activation with two states, and it is clear that one characteristic
common to both states is the slow decay in power consumption from the onset
of the state transition. Indeed, the characteristic is frequent enough that when
all such segments corresponding to each state are aligned, a distinct trend can be
observed. The heat maps demonstrating this for state 1 and state 3 of the refrig-
erator are depicted in Figure 4.39 and Figure 4.40 respectively. Each horizontal
line in the heat map shows the variation of power across one segment, while the
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Figure 4.38: An example of an ON period with two states in the refrigerator of house 2 of
the REDD dataset.
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Figure 4.39: The variation in power for the first 100 time steps of the segments corre-
sponding to state 1 of the refrigerator from house 2 of the REDD dataset.
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Figure 4.40: The variation in power for the first 60 time steps of the segments correspond-
ing to state 3 of the refrigerator from house 2 of the REDD dataset.
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Figure 4.41: Mean power consumption values for the first 100 time steps of the segment
corresponding to state 1. The distance of the error bar from the centre signifies the stan-
dard deviation.
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Figure 4.42: Mean power consumption values for the first 60 time steps of the segment
corresponding to state 3. The distance of the error bar from the centre signifies the stan-
dard deviation.
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Figure 4.43: Fitted mean function for state 1 of the refrigerator from house 2 of the REDD
dataset.

0 10 20 30 40 50 60
420

440

460

Figure 4.44: Fitted mean function for state 3 of the refrigerator from house 2 of the REDD
dataset.
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segment time index in the figures is equivalent to the counter values or the dwell
time for a particular state.

The segments aligned in this way allow the computation of the mean power
for a given counter value. For state 1 and state 3 of the refrigerator, these are
presented in Figure 4.41 and Figure 4.42. By performing regression analysis on
the preceding outcomes, the fitted mean functions are obtained (see Figure 4.43
and Figure 4.44).

4.5.4 State Inference Using PBDT

We now briefly investigate the advantage of using the segmental FVTHMM over
the non-segmental version from a load disaggregation perspective. As a proof-of-
concept, the data from house 2 of the REDD dataset is chosen for this experiment.
Also, the only segmental models are those shown in the previous subsection for
state 1 and state 3 of the refrigerator. All the other states of other appliances have
the parameter axt,k set to zero, signifying a constant mean for each segment and
each state. Disaggregation is performed like before but now, the recursive expres-
sion in (4.25) is used for calculating the particle score in the PBDT algorithm.

A comparison between the segmental version and the ordinary FVTHMM-
PBDT method in terms of the CAR metric is shown in Figure 4.45. Expectedly,
the explicit modelling of the segmental variation does indeed improve disaggre-
gation accuracy.

Figure 4.45: Comparison between FVTHMM-PBDT and Segmental FVTHMM-PBDT in
terms of the overall disaggregation accuracy.

A closer look reveals that nearly all of the misclassifications due to the refriger-
ator’s transient have disappeared. If we consider the ground truth of a particular
segment of data shown in Figure 4.46 and the estimates using FVHMM-PBDT



Page 145

30000 30200 30400 30600 30800 31000
0

100

200

300

400

Figure 4.46: Ground truth of a short segment of data from house 2 of the REDD dataset.
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Figure 4.47: The estimates for the same segment using FVTHMM-PBDT.
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Figure 4.48: The estimates for the same segment using Segmental FVTHMM-PBDT.
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shown in Figure 4.47, we can see that there are considerable errors located at the
onset of the transients. Specifically, there are the false positives associated with
lighting and kitchen outlets1 at these points.

In contrast, for the segmental counterpart, errors of this kind are largely not
present (see Figure 4.48). The only exception is at the time around 30500, where
the false positives associated with both lighting and kitchen outlets1 can
be seen. If we turn our attention to the ground truth signal, we can see that this er-
ror could very likely be due to the larger-than-usual transient that follows from a
possible defrost cycle of the refrigerator at around the time index 30350. The error
in particular illustrates why incorporating the variation of variance is important,
given that the onset of the transient always have greater variance in general (see
the first index of Figure 4.41 and Figure 4.42). However, it is not clear at this point
how to best represent the variation of variance in parametric form. It could very
well be modelled non-parametrically using Gaussian Processes [Ras04], though
these aspects are beyond the scope of this thesis.

4.6 Summary

In this chapter, we have presented a new algorithm, Particle-based Distribution
Truncation (PBDT), for inferring the state of appliances from the aggregate mea-
surements. Whereas the Viterbi algorithm is computationally intractable to be
used with FVTHMM, the proposed algorithm is computationally efficient and
scalable. Solutions or particles at each step which are implausible (e.g. low
particle score) are truncated in a systematic way or prevented from being gen-
erated, mirroring that of the survival-of-the-fittest concept from particle filters,
while generated particles with the same augmented system state are merged via
a hash-based deduplication procedure to keep only one particle with the highest
score, thus closely relating it to the selection step of the Viterbi algorithm in which
only the most likely state leading to a given destination state in the trellis struc-
ture is kept. In addition, important optimisations included in the implementation
of the PBDT algorithm are also described, wherein the distribution of solutions
amongst particles at a particular time step is exploited to share computation re-
sults for updating the particle score. This was shown to enable an average speed
improvement of 20 times over one without such optimisations.

Although the PBDT algorithm is technically an approximation to the Viterbi
algorithm, it is inherently a real-time approach, unlike Gibbs sampling and simu-
lated annealing. Further, it has a tunable parameter, i.e. the maximum number of
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particles at each time step, to control the extent of the approximation. It was illus-
trated that, as the parameter increases past a certain point, the PBDT algorithm
is able to converge to the optimal state trajectory that would have been produced
by the Viterbi algorithm if it were used. As such, the PBDT algorithm is flexible
in that it enables the optimality to be controlled, with allowances for finding the
optimal solution, should there be computational resources to spare.

The application of the PBDT algorithm to state inferences under FVTHMM
for load disaggregation with real-world data reveals a number of important re-
sults. Firstly, even when the system state cardinality is in the order of 20 billion,
we have demonstrated that the algorithm is able to maintain significant compu-
tational throughput (i.e. per-sample processing time of under 1 second) for satis-
fying real-time requirements while achieving average disaggregation accuracy of
approximately 80%. Secondly, the runtime of the algorithm is shown to increase
approximately linearly in the number of appliances and approximately logarith-
mically in the number of system states, validating the claim that the algorithm is
scalable.

In evaluating the PBDT algorithm, a new metric for identifying the source
of disaggregation errors has also been devised. Known as the cumulative error
log-likelihood ratio (CELLR), the metric allows error segments or blocks of con-
secutive errors to be attributed to the inaccuracies in the model or the approxi-
mation inherent to the proposed algorithm. Using this, and its decomposition,
CELLRe and CELLRd, it was discovered that the majority of errors in the disag-
gregation of real-world data were not due to the truncation of implausible solu-
tions in the PBDT algorithm but because of spurious observations (e.g. power
surge and gradual decays in power) that are difficult to be accounted for in the
emission model of FVTHMM.

To overcome this, an augmented form of FVTHMM with segmental emis-
sion probabilities has been investigated. The power consumption within a given
state is no longer assumed to be stationary. Instead, its distributional parameters
are modelled to vary according to the state dwell time, much like the duration-
dependent state transition probabilities used in the temporal part of FVTHMM.
In the brief evaluation conducted on the real-world data of one house, the aug-
mented model has been shown to fit the gradual decreases in power consumption
well, with a further improvement of approximately 5% in the disaggregation ac-
curacy. These preliminary results provide the motivation for more experiments to
be done, so that its advantage in modelling a broader range of household appli-
ances can be ascertained. Additionally, the augmented model presented here pro-
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vides the framework for which further studies could be performed. Of particular
interest is the alternative forms of the segmental emission probability appropri-
ate for the modelling of other classes of appliances. Separate means of improving
robustness towards other spurious observations (due to unmodelled appliances)
are detailed in the next chapter.



CHAPTER FIVE

ROBUST EXTRACTION OF

APPLIANCE POWER

5.1 Introduction and Related Work

The techniques studied in previous chapters have been shown to achieve high
disaggregation accuracy while meeting real-time requirements. However, one
limiting assumption was made in all of these, that is, all appliances in a household
are known, and they are included in the model. In reality, however, unknown
appliances are bound to be added via new purchases or guest visits after the
initial training stage. If these appliances are not taken into account through some
special means, the aggregating effect as a result of these new additions would
produce erroneous disaggregation under the previously trained model.

A natural way to solve this is to detect the presence of any new appliances
from the aggregate measurements, extract their contributions and learn their
model parameters. Though a desired goal from a practical point of view, it is
not clear how this could be achieved, given that the mere detection of new appli-
ances requires that the NILM system has certain prior knowledge on the features
of unknown loads. Unless these features are particularly distinctive from those of
modelled appliances, devising an objective rule for the detection of unknown ap-
pliances is immensely challenging. As such, instead of specifically concentrating
on the detection of unknown appliances in this way, we approach the problem
from a different perspective, whereby the power contributions of modelled ap-
pliances are robustly extracted from the aggregate measurements in the presence
of unmodelled loads. We believe this is a more sensible approach as more infor-
mation is readily available from already modelled loads.

The concept was first explored by Kolter and Jaakkola [KJ12], in which they
included a robust noise term for absorbing power contributions from unmodelled
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devices, while simultaneously allowing those that are modelled to be extracted.
In particular, the variation of the noise term is assumed to be piece-wise con-
stant, consistent with the way appliances consume power in general. Therefore,
when portions of aggregate power that are not likely to be explained by models
of known appliances are observed, they are implicitly assigned to the noise term.

In this chapter, a similar concept is adopted and integrated into the existing
FVTHMM-PBDT framework, with the aim of increasing the robustness of the
extraction process, while inheriting the advantage of the PBDT algorithm in al-
lowing real-time disaggregation of aggregate measurements and the benefits of
using state durations in separating between appliances which are similar, unlike
the work of Kolter and Jaakkola [KJ12]. An apparent advantage of this integra-
tion is, there is no longer the practical requirement to learn the models of each
and every appliance in a residential unit. The learning process can instead be
focused on appliances of interest (e.g. refrigerator, heater etc.), leaving other mis-
cellaneous devices to be unmodelled. Examples of the latter are appliances which
are too insignificant to be modelled, such as garage door openers, clock radios,
cordless telephones and lights in places rarely accessed in the dark (e.g. store-
room and spare room). Additionally, the integrated framework enables the power
contributions of an appliance to be extracted and subtracted from the aggregate
measurements iteratively; the reduced aggregate measurements get simpler af-
ter each round, with the leftover unextracted portion being classed as ”unmod-
elled”. Such an iterative NILM approach has been briefly mentioned by Parson
et al. [PGWR12] and Wong et al. [WWDc13], but its implementation is beyond
the scope of this research. Instead, the means of extraction presented here pro-
vides the foundation from which more refined iterative NILM approaches can be
developed.

In short, the main contributions discussed in this chapter are

• A robust version of FVTHMM proposed in Chapter 3, robust diff-FVTHMM
(RdFVTHMM1), which allows the extraction of known appliances to be less
affected by the potentially changing composition of unknown loads.

• A modification to the original PBDT algorithm devised in Chapter 4,
dPBDT, for the robust real-time tracking of both unmodelled and modelled
appliances.

1To ease readability, RdFVTHMM can be pronounced as ”rhythm”.
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• A RdFVTHMM-dPBDT framework and a detailed study on its ability to
perform disaggregation accurately, even when known appliances and un-
known loads have similar power consumption.

5.2 Effects of Unknown Appliances

As alluded to at the start of the previous section, the presence of unknown loads
negatively affects the detection of known appliances. The aggregate power signal
is shifted upwards, biasing the contributions of all the other modelled loads, i.e.
in the fundamental equation shown in (3.13) of Chapter 3,

yt =
K∑
k=1

yt,k + rt, (5.1)

the residual rt is non-zero. As a result, the emission model governing the pre-
existing relationship between the aggregate power consumption yt and the sys-
tem state xt composed of the states of the K modelled appliances is no longer
valid; the assumption that the K appliances in the ”knowledge base” are the only
possible appliances to be encountered during disaggregation is violated, given
that yt could now be potentially made up of power values external to those in-
cluded in the model.

As an illustrative example of the negative effects, consider Figure 5.1, where
the emission distribution for a given system state xt = i is shown. In the event
that rt is non-zero and i is the actual system state, the observed yt is shifted to
the tail end of the probability distribution, undesirably reducing the likelihood
of i being the estimate. Therefore, the sequence of system states estimated from

Figure 5.1: The reduced likelihood under a pre-existing model when rt is non-zero. The
red line denotes a particular aggregate power consumption that would have been ob-
served if not for the non-zero rt.
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(a) One portion of the aggregate data of house 2 of the REDD dataset with synthetic
residual data added.

(b) The estimated contributions of known appliances using FVTHMM-PBDT, when the
synthetic residual is present in the aggregate data.

(c) The estimated contributions of known appliances using FVTHMM-PBDT, when the
synthetic residual is not present in the aggregate data.

Figure 5.2: A comparison between the output of FVTHMM-PBDT when the synthetic
residual is present in the aggregate data and when the synthetic residual is not present
in the aggregate data. The synthetic residual shown has a mean of 20 and a standard
deviation of 10.
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Figure 5.3: The variation of the correct energy assignment rate (CAR) with the mean of
the synthetic residual added to the aggregate data.

the maximisation of the overall likelihood p(x1:T , y1:T , c1:T ) could have extreme
deviations from the true system states, as compared to when rt = 0 for all t.

Figure 5.2 demonstrates a toy example in which data of a synthetic unknown
appliance with a mean of 20 and a standard deviation of 10 is added to the aggre-
gate power consumption of house 2 of the REDD dataset. The synthetic data is
representative of a small device that is being turned on all the time but unmod-
elled (e.g. wireless routers, cordless telephones etc.), and the results of the dis-
aggregation show that even with small and relatively constant residual values,
errors can be profound. Further, as shown in Figure 5.3, the correct energy as-
signment rate (CAR) typically reduces with the increasing mean of the synthetic
residual.

A natural solution to this problem is to use the change in power consumption,
as was done in the seminal paper by Hart [Har92]. This way, constant offsets in
the aggregate signal due to unknown loads do not affect the estimation of the
states of the known appliances, and observed changes in power which are pro-
duced by unknown loads could be ignored if they fall below a certain tolerance
level. While the idea was laid out by Hart, it was not specified how such toler-
ance could be determined so as to account for the variability in the load and other
cases where the known appliances are similar in power consumption to unknown
loads. Also, besides the limitation in his work where appliances are modelled to
have only two states, it is not clear how state duration information, as used in
our model, could be seamlessly integrated in his original proposal to aid better
separation between similar appliances. For this reason, a more integrated and
systematic approach is required.
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5.3 A Robust Extension of FVTHMM

The previous section has highlighted the practical concerns pertaining to the pres-
ence of unknown appliances in a NILM system, and the reduced disaggregation
accuracies that result when these appliances are not taken into account. Here, for
the robust extraction of the contributions of modelled appliances, we describe a
necessary modification to the original FVTHMM. Also discussed is the parameter
estimation procedure for the updated model.

5.3.1 Model Description

From the issues given in the previous section, it is clear that the modified model
has to be able to cope with offsets in power consumption caused by unknown ap-
pliances, while not wrongly attributing their power contributions to modelled
loads. For this reason, two new additions are incorporated into the original
FVTHMM model. The first is the adoption of the change in power as an addi-
tional observed variable, like previously mentioned for the work of Hart [Har92],
among few others [PGWR12]. This allows the extraction of power consumption
of modelled appliances to be more robust against the aforementioned offsets. On
the other hand, to prevent changes in power due to unknown appliances from be-
ing attributed to any of the modelled devices mistakenly, a noise model inspired
by the work of Kolter and Jaakkola [KJ12] is used. The model’s role is akin to
having an extra component in mixture modelling for capturing outliers, except
that, in our case, the outliers refer to power contributions owing to unmodelled
loads that are not likely to be generated by the modelled appliances.

Altogether, the outcome of these additions is the robust version of FVTHMM –
RdFVTHMM – whose dynamic Bayesian network (DBN) representation is shown
in Figure 5.4. In the figure, zt denotes the difference between the aggregate mea-
surements at time t and time t − 1 (i.e. zt = yt − yt−1), whereas rt refers to
the residual at time t. The conditional dependence of zt is expressed by p(zt |
xt,xt−1, rt, rt−1), since zt is mathematically dependent on yt and yt−1. As such,
it is by extension dependent on the latent variables, xt, xt−1, rt, and rt−1. Note
that, unlike the ordinary FVTHMM mentioned in previous chapters, xt now only
consists of the states of the K modelled appliances, i.e. xt = (xt,1, . . . , xt,K). The
contributions of the unknown loads to the aggregate measurements are repre-
sented by the residuals. Also, by virtue of the expression in (5.1), the aggregate
measurement yt is now conditionally dependent on both xt and the residual, i.e.
p(yt | xt, rt).
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Figure 5.4: Dynamic Bayesian network of the RdFVTHMM.

Given these conditional dependence assumptions, the task is then to specify
the form of p(zt | xt,xt−1, rt, rt−1), p(yt | xt, rt) and p(rt). For the former, we have
to consider the variation of zt with respect to the fluctuations in the aggregate
measurements due to modelled appliances, as well as the residuals. When the
observed zt is only caused by the change in states among the modelled loads
(i.e. xt 6= xt−1 and rt = rt−1), the variation is simply governed by a Gaussian
distribution whose mean and variance are those associated with the the transition
from xt−1 to xt; that is, the mean is µxt−1,xt =

∑
k∈H µxt−1,kxt,k and the variance is

σ2
xt−1xt

=
∑

k∈H σ
2
xt−1,kxt,k

, with H = {k ∈ {1, · · · , K} | xt−1,k 6= xt,k}. µxt−1,kxt,k and
σ2
xt−1,k,xt,k

denote the mean and variance of the change in power due to the state
change of modelled appliance k. From H , the corresponding mean and variance
of self transitions are not included in both µxt−1xt and σxt−1xt since only changes
in steady-state power are considered, as we shall see in Section 5.4.2.
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On the other hand, for cases where the observed zt is only caused by the
change in residuals (i.e. xt = xt−1 and rt 6= rt−1), the form of p(zt | xt,xt−1, rt, rt−1)

is more difficult to be expressed, as the variation of residuals requires prior
knowledge of the unmodelled appliances, which are by definition unknown.
However, despite this, we can still make the assumption that the residuals are
typically piece-wise constant [KJ12], a property that is consistent with the power
draw of many appliances; that is, the changes in the residuals are sparse (i.e.
mostly zeros) relative to the length of the observations. It is this sparsity that
can be exploited to reconstruct the residual signal, as has been done in the field
of compressed sensing. In particular, the reconstructed signal is the solution to
the `1-minimisation problem, or equivalently, the maximum likelihood problem
with the signal values being from a Laplace distribution. Therefore, whenever
xt = xt−1 and zt = rt− rt−1, zt is assumed to be distributed according to a Laplace
distribution.

For the work presented here, however, the combined case of zt being caused
by both the state changes among the modelled loads and the changes in the
residuals is assumed to be unlikely. Investigation into formulations of p(zt |
xt,xt−1, rt, rt−1) to handle deviations from such an assumption is a promising di-
rection for future work.

Taken together, the preceding assumptions made in relation to the variation
of zt give rise to

p(zt | xt,xt−1, rt, rt−1) =



N
(
zt | µxt−1xt , σ

2
xt−1xt

)
,

if xt−1 6= xt and
rt = rt−1

λ

2
exp(−λ‖zt‖1),

if xt = xt−1 and
rt 6= rt−1

0, otherwise,

(5.2)

where N (zt | µxt−1xt , σ
2
xt−1xt

) is the probability density function of a Gaussian
distribution with mean µxt−1xt and variance σ2

xt−1xt
, while λ is the rate parameter

of the Laplace distribution. This concludes the description for expressing p(zt |
xt,xt−1, rt, rt−1).

Let us now turn our attention to the specification of p(rt) and p(yt | xt, rt),
both of which are hard to express, given the unknown nature of the composition
of unknown appliances, and the mean and variance of the residual. As such, in
place of p(rt) and p(yt | xt, rt), a penalty function is used to characterise the un-
certainty in the variation of rt and yt. The form of the penalty function is defined
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through a few prior knowledge inherent in the relation of (5.1). The first is based
on the assumption that a typical household environment would not contain any
appliances which could supply power back to the grid, i.e. rt ≥ 0 and yt,k ≥ 0 for
all k. Secondly, the residuals should be less than or equal to the aggregate values.
Together, this culminates into a piece-wise relation

fpenalty(rt | xt, yt) =


N (rt | −3σxt , σ

2
xt)

N (0 | 0, σ2
xt)

, rt ≤ −3σxt

1, −3σxt < rt ≤ yt

0, rt > yt,

(5.3)

where σ2
xt =

∑K
k=1 σ

2
xt,k

.

Note that we have chosen to use a smooth transition from the onset of rt ≤
−3σxt instead of a sharp fall-off at rt = 0, as for a given xt, the actual power con-
sumption of appliances are not strictly constant with values equal or more than
the mean, µxt =

∑K
k=1 µxt,k ; they may have tendencies to fall below the mean as

well. Therefore, small amounts of negative rt have to be tolerated. In the penalty
function, the rate of the gradual roll-off towards zero is defined by a renormalised
single-sided Gaussian probability density function centred at 3 standard devia-
tions away from the rt = 0, with a variance from the conditional dependence
of yt on xt as if rt were zero, i.e. p(yt | xt) in Chapter 3. The penalty function
serves to discourage the selection of system states that violate the aforementioned
assumptions of rt, so that the estimated x1:T is consistent with the physical pro-
cesses of the appliances involved. A visual representation of a penalty function
with yt = 100 and σxt = 4 is shown in Figure 5.5.

By combining the previously mentioned assumptions and the conditional de-
pendence relationships, the DBN shown in Figure 5.4 is thus described by the
joint probability

p(x1:T , y1:T , z2:T , r1:t, c1:T ) = p(x1)p(c1)
T∏
t=1

fpenalty(rt | xt, yt)

×
T∏
s=2

[
p(xs | xs−1, cs−1)

× p(cs | xs, cs−1,xs−1)

× p(zs | xs,xs−1, rs, rs−1)
]
,

(5.4)
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Figure 5.5: Penalty function with yt = 100 and σxt = 4

while the recursive expression of the same joint probability is

p(x1:t, y1:t, z2:t, r1:t, c1:t) = p(x1:t−1, y1:t−1, z2:t−1, r1:t−1, c1:t−1)

× fpenalty(rt | xt, yt)

× p(xt | xt−1, ct−1)

× p(ct | xt, ct−1,xt−1)

× p(zt | xt,xt−1, rt, rt−1).

(5.5)

5.3.2 Parameter Estimation

Before describing the method for estimating the parameters of RdFVTHMM, let
us recall from Section 3.4 of Chapter 3 that the model parameters can be denoted
by the tuple λ = (λe,λd), where λe represents the parameters for the emission
model, while λd refers to the parameters for the temporal model.

For RdFVTHMM, λd is unchanged from that of the FVTHMM since condi-
tional dependencies governing the state transitions and state durations remain
the same. Thus, λd is still composed of the parameters for the mixture of Gamma
distribution for each appliance k, i.e. mk, the mixture coefficients; αk, the shape
parameters; βk, the scale parameters. Further, it includes the initial state tran-
sition probabilities πk and the Markov state transition matrices Ak. In short,
λd = [(πk, Ak,mk,αk,βk)]

K
k=1. As these parameters are exactly the same as be-

fore, finding their estimates from the training data is not discussed here; their
details can be found in Section 3.4.2.
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Likewise, λe is similar to that of the FVTHMM, except it now has to include
the parameters of the probability p(zt | xt,xt−1, rt, rt−1); that is, the rate parameter
λ of the Laplace distribution, and the mean and variance of the change in power
as resulting from the transition from state i to j of each known appliance k, i.e.
µi,j and σ2

i,j .

Finding the rate parameter

To determine λ, a natural approach is to solve

λ̂ = arg max
λ

p(x1:T , y1:T , z1:T , r1:T , c1:T ) (5.6)

over a training dataset with known x1:T , y1:T , z1:T , r1:T and c1:T . Because p(zt |
xt,xt−1, rt, rt−1) is the only factor that depends on λ, and as the Laplace distri-
bution only arises for cases with xt−1 = xt and rt 6= rt−1, the problem can be
rewritten as

λ̂ = arg max
λ

∑
s∈Z

log(p(zs | xs,xs−1, rs, rs−1)), (5.7)

whereZ = {t | xt−1 = xt}. After performing the relevant derivations, the solution
reduces to a closed form, i.e.

λ̂ =
|Z|∑

s∈Z‖zs‖1

, (5.8)

with |Z| denoting the cardinality of the set Z . Not surprisingly, this is the same
expression as the maximum-likelihood estimate (MLE) of λ for a typical Laplace
distribution. In this context however, it can be interpreted as the reciprocal of
the average change in power attributed to unknown loads in the training data.
If the change in power, when none of the known appliances change states, is
large on average, λ̂ will be low and the standard deviation of the fitted Laplace
distribution will be high to accommodate changes in the residuals which deviate
further away from zero.

Although the use of (5.8) in this way appears to be an elegant approach, the
MLE of λ is not an obvious right choice, given the potential differences in what
constitutes an unmodelled load in the training data and those encountered dur-
ing disaggregation after deployment. While this may suggest that determining
λ is difficult, a guideline for tweaking λ can actually be made. In particular, we
can consider the role of λ in influencing the height and spread of the Laplace
probability density function (pdf) relative to those of the Gaussian pdfs for cases
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where xt−1 6= xt and rt = rt−1. This can be defined by a flatness ratio ρσ between
the standard deviation of the Laplace pdf, σλ =

√
2/λ, and the largest standard

deviation among the Gaussian pdfs for the state transitions, i.e.

ρσ =
σλ

max
k

max
xt−1,k,xt,k
xt−1,k 6=xt,k

σxt−1,kxt,k

. (5.9)

Ideally, the Laplace pdf should be much flatter at points where the mass of
the Gaussian pdfs are significant, so that change in power values close to the cen-
troid of the Gaussian pdfs are correctly assigned to modelled appliances instead
of the residuals. However, there is an inherent trade-off in the choice of λ (or
equivalently, ρσ) for meeting this goal. To gain an intuition on the role of λ in
this regard, consider Figure 5.6 and Figure 5.7. The Gaussian pdfs shown are as-
sociated with the case for when there is a state transition among the modelled
appliances, whereas the Laplace pdfs correspond to the case with no modelled
appliances changing states. In the figures, V denotes the difference in the likeli-
hood value between the Gaussian pdf and the Laplace pdf evaluated at µxt−1,xt ,
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Figure 5.6: Visual representation of (5.2) with small µx−1txt . The Gaussian distribution
corresponds to the case of xt−1 6= xt, while the Laplace distributions correspond to the
case with no state transitions, each with different ρσ.
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Figure 5.7: Visual representation of (5.2) with large µx−1txt . The Gaussian distribution
corresponds to the case of xt−1 6= xt, while the Laplace distributions correspond to the
case with no state transitions, each with different ρσ.

while W refers to the range of values for which the likelihood value of the Gaus-
sian pdf exceeds the likelihood of the Laplace pdf.

As illustrated in Figure 5.6, it can be seen that choosing a small λ (or large ρσ)
leads to a bigger V for state transitions with small µxt−1,xt . On the other hand,
as shown in Figure 5.7, selecting a small λ (or large ρσ) for cases with big µxt−1,xt

results in small V , given the steeper decay of the Laplace pdf with larger λ. How-
ever, increasing V has the side effect of increasing W . With a larger W , there will
be more tendencies for zt to be assigned to any of the modelled appliances even
though the observed zt is actually caused by unknown loads. As such, there is a
trade-off in the choice of λ (or ρσ) between selecting for a large V and selecting
for a small V . In practice, an intermediate λ (or ρσ) which balances between the
two extremes should be chosen. A more detailed discussion of ρσ and its effects
on the extraction accuracy of known appliances is given in Section 5.5.3.
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Finding the means and variances of known appliances’ change in power

The mean and the variance of the change in power that results from the transi-
tion from state i to a different state j (i.e. i 6= j) can be derived from the mean
and variance of the power consumption of state i and state j, learned as part of
the training procedure described in Section 3.4.1, such that µi,j = µj − µi and
σ2
i,j = σ2

i + σ2
j . On the other hand, for the case of self-transitions (i.e. i = j),

µi,j and σ2
i,j are not required to be specified explicitly, since the calculations of

µxt−1,xt and σxt−1,xt only perform summations over the parameters correspond-
ing to those appliances which change states, i.e. µxt−1xt =

∑
k∈H µxt−1,kxt,k and

σ2
xt−1xt

=
∑

k∈H σ
2
xt−1,kxt,k

, with H = {k ∈ {1, · · · , K} | xt−1,k 6= xt,k}. This is jus-
tified by the use of a steady-state segmentation algorithm during disaggregation,
where the mean of consecutive power values considered to be in steady-state is
subtracted from the mean of the following steady-state segment, as we shall see
in the next section.

5.4 A Modified PBDT Algorithm

In this section, we first explain the problem of applying the original PBDT al-
gorithm directly to RdFVTHMM. Then, with consideration of these issues, we
outline a series of modifications that are needed as part of a modified version of
the PBDT algorithm.

5.4.1 Overview

In Chapter 4, the original PBDT algorithm has been demonstrated to work partic-
ularly well for state inferences under FVTHMM. For the case of RdFVTHMM
however, due to the weak constraints imposed by the penalty function and
the limited information contained in the change in power signal when no state
change occurs, it was found that the algorithm is now more sensitive to transients
(e.g. power surge, slow rise-time) that happens at the onset of the state transition
of some appliances. In particular, the particle with the true system state (i.e. the
true particle) at a certain time step but with an intermediate score as a result of
one such observation, now has a reduced ability to gain rank as more subsequent
stable values are observed. Worse, it may even lose rank at each increasing time
step after observing an atypical change in power, with the potential of being trun-
cated in the end.



Page 163

t

Power (W)

t1+2t1 t1+1t1–1

Particle

True particle

Observed Power Values: 

Sorted particles: 

Truncated

Due to the weak constraint 
imposed by the penalty 
function and the limited 
information contained in the 
change-in-power signal from 
t1+1 onwards, the true 

particle could not gain rank 
after the initial transient at t1.

Higher
particle 
score

Lower
particle 
score

Key:

Figure 5.8: Sensitivity to transients.

To better understand this phenomenon, consider Figure 5.8 where a hypothet-
ical aggregate power signal and a sorted list of particles at each time step are
shown. At time t1, an appliance is switched on and the power signal increases
past its steady-state value. As this surge in power is an atypical event, and it is
not accounted for in the model, the score of the true particle is computed to be
lower than if a power surge is not observed. Hence, at the expense of the true
particle, the other particles with the wrong states which could better explain the
anomaly are ranked higher.

Typically, the PBDT algorithm allows the true particle to increase its score if
subsequent values after t1 are stable and close to its modelled values. However,
because the penalty function fpenalty(rt | xt, yt) is less restrictive in the sense that
it is significant over a wider range of values in its domain as compared that of
the emission probability p(yt | x) used in FVTHMM, particles at time t > t1, with
ancestors at t1 ranked higher than the true particle, are not forced to take on lower
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scores. While one might expect the factor p(zt | xt,xt−1, rt, rt−1) to compensate for
the less restrictive penalty function, it does not provide enough information for
corrective actions to take place, given that the change in power at steady state
is normally zero on average, regardless of the appliances that are in operation.
Therefore, modifications to the original PBDT algorithm are clearly needed for
the state inference under RdFVTHMM. Figure 5.9 illustrates the key components
of the modified PBDT algorithm detailed in the discussion that follows.

Steady-state Segmentation 
and Edge Detection

Particle Propagation

Particle Generation

Figure 5.9: The block diagram of the modified PBDT algorithm.

5.4.2 Steady-state Segmentation and Edge Detection

The first modification involves the detection of state changes (or edges) from the
aggregate power measurements and the extraction of the mean of a segment of
consecutive power values considered to be in steady-state. Like in [Har85], the
main idea is to use the changes in the mean between two steady-state segments,
∆ss = Ynew − Yold (see Figure 5.10), instead of the pair-wise change in power,
zt = yt − yt−1, in the calculation of the particle score. This prevents a significant
reduction in the score of the true particle as a result of transient power values.

t

Power (W)

t1 t2

Steady-state period

Steady-state period Transient 
period

Figure 5.10: The mean of two steady-state segments, Yold and Ynew, and the difference
between the means, ∆ss.
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Before describing the steady-state segmentation and the edge detection pro-
cedure, the notion of steady-state and what constitutes a state change need to be
quantified. The condition for the former is said to be met ifNss consecutive power
measurements all have values of |zt| falling below a certain predefined thresh-
old ∆thres, while the latter is the reverse case where |zt| exceeds ∆thres. We follow
Hart’s original implementation [Har85] and use a Nss of 3. On the other hand, the
choice of ∆thres and its effect on the overall disaggregation accuracy are studied
in Section 5.5.3. Admittedly, a more sophisticated version of the procedure could
be adopted from the field of change-point detection [AM07]. However, such an
implementation is beyond the scope of the research.

The method, based on Hart’s work [Har85], for the real-time detection of state
changes and the segmentation of steady-state, is summarised in Algorithm 2. If
we assume that the mean of a previous steady-state segment, Yold, has been de-
termined, the power values for the current steady-state segment over the last
Csteady time steps have been stable and the current power measurement yt does
not exceed that of the previous time step by ∆thres, then the mean for the current
steady-state segment up to the current time step t will be updated according to
the running average, (Csteady × Ynew + yt)/(Csteady + 1). On the other hand, if yt
deviates by ∆thres or more from yt−1, with other conditions being the same, the
current steady-state segment is considered to have ended and therefore, ∆ss can
be computed. Accordingly, Csteady is reset to zero so that Ynew now starts afresh

Algorithm 2 Real-time Steady-state Segmentation and Edge Detection

1: for each time step t do
2: if|yt − yt−1| ≤ ∆thres then
3: exceeded← 0
4: else
5: exceeded← 1
6: end if
7: if exceeded = 1 and changing = 0 then
8: ∆ss←Ynew − Yold

9: Yold←Ynew

10: end if
11: if exceeded = 1 then
12: Csteady← 0
13: end if
14: Ynew← (Csteady × Ynew + yt)/(Csteady + 1)
15: Csteady← Csteady + 1
16: changing← exceeded
17: end for
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to accumulate the subsequent observed power measurements towards the mean
for the next steady-state segment. Note that the accumulation will only begin
once the steady-state condition has been established; power measurements due
to transient behaviours are not included in the average.

5.4.3 Particle Generation and Propagation

The second modification involves not generating particles at each time step, un-
like the original PBDT algorithm described in Section 4.3.1 of Chapter 4. Instead,
particles are only generated at points in time where state change occurs or when
change in steady-state power consumption is detected (i.e. at only event points).
Between two event points t1 and t2, with t1 < t2, the particles are simply propa-
gated from t1 to t2−1. That is, their system states within the interval are fixed, but
their counter vectors ct1:t2−1 and their scores are updated accordingly. Not only
does this prevent erroneous generation of sorted particles at each time step when
information that can be gleaned from the change in power values is limited, it
also nicely integrates with the steady-state segmentation and the edge detection
procedures described in Section 5.4.2.

The overall process is presented in Figure 5.11. At time t1 or whenever ∆ss has
been calculated, the particle generation procedure detailed in Section 4.3.1 is per-
formed to create Np,max particles. More specifically, for reasons already explained
in the previous chapter and to ensure the efficient enumeration of the possible xt1

when generating the offspring particles for eachmth parent particle, only the sys-
tem states xt1 satisfying fpenalty(rt1 | xt1 , yt1) > ε and p(∆ss | xt1 , x̂

(m)
t1−1, rt1 , r̂

(m)
t1−1) >

ε, and those corresponding to at most three appliances changing states (i.e. the
Hamming distance dH(x̂

(m)
t1−1,xt1) ≤ 3) are considered. Then, based on the recur-

sive expression of the joint probability of RdFVTHMM in (5.5), each nth generated
particle at t = t1 is scored using

St(n) =



log(p(x̂
(n)
1 , ĉ

(n)
1 )) + log(fpenalty(r̂

(n)
1 | x̂(n)

1 , y1)), if t = 1

St−1(m) + log(fpenalty(r̂
(n)
t | x̂

(n)
t , yt))

+ log(p(x̂
(n)
t , ĉ

(n)
t | x̂

(m)
t−1, ĉ

(m)
t−1))

+ log(p(∆ss | x̂(n)
t , x̂

(m)
t−1, r̂

(n)
t , r̂

(m)
t−1))

, if t > 1,

(5.10)

before being sorted and truncated to keep only the Np,max particles with the high-
est score, like in the original PBDT algorithm. Having generated the particles at
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t1, the propagation step is trivial; the particles for t ∈ [t1 + 1, t2 − 1] are forced
to have their ranks and system states unchanged (i.e. n = m and x̂

(n)
t = x̂

(m)
t−1),

whereas ĉt = ĉ
(n)
t−1 + 1 and the scores are updated as in (5.10) but with ∆ss = 0.

t
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Figure 5.11: The process of particle generation and propagation in the modified PBDT
algorithm, dPBDT.

In the implementation, further computational optimisations based on the
sharing of computation results discussed in Section 4.3.2 are included. Rather
than calculating p(∆ss | xt, x̂(m)

t−1, r̂
(n)
t , r̂

(m)
t−1) for each mth parent particle, we exploit

the observation that xt−1 for different parent particles can be common. In this
way, calculations of p(∆ss | xt, x̂(m)

t−1, r̂
(n)
t , r̂

(m)
t−1) for a given group of parent parti-

cles with the same xt−1 can be shared, and computational improvements could
be gained. To recall more details on this computation-sharing scheme, see Sec-
tion 4.3.2.
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5.5 Experimental Results and Discussion

In this section, we evaluate the disaggregation accuracy of the modified method,
RdFVTHMM-dPBDT, for cases where not all appliances in a residential unit are
modelled or known. Using both synthetic data and data of real homes from the
REDD dataset, comparison of the method is made with respect to FHMM-PBDT,
FVTHMM-PBDT and the robust version of FHMM-PBDT, RdFHMM-dPBDT.
Also presented is an empirical study of the influence of the flatness ratio ρσ and
the threshold ∆thres on the disaggregation accuracy. Like in Chapter 4, all evalua-
tions are performed using MATLAB on a PC with an Intel Core i7-4770 processor
and 16 GB of RAM.

5.5.1 Evaluation Metrics

To quantify the correct extraction of known appliances in the presence of un-
known loads, three additional metrics are used, in addition to those introduced in
Section 4.4.1, since the previous metrics do not provide sufficient insights neces-
sary for understanding wrong energy assignments to unmodelled and modelled
appliances. Basing off the standard precision, recall and F-score metrics from the
field of information retrieval [KKP06], they are

Pk =
ETP,k

ETP,k + EFP,k
(5.11)

Rk =
ETP,k

ETP,k + EFN,k
(5.12)

Fk = 2 · PkRk

Pk + Rk

. (5.13)

ETP,k, EFN,k and EFP,k are defined as before in Section 4.4.1, while Pk and Rk are
the energy-assignment variant of the precision and recall of appliance k respec-
tively. The F-score Fk, being the harmonic mean between Pk and Rk, remains
unchanged from the literature.

Intuitively, Pk relates to the proportion of energy correctly attributed to ap-
pliance k relative to the total energy attributed by the algorithm to the same ap-
pliance. Whereas, Rk denotes the ratio between the correctly extracted energy
and the actual energy consumed by appliance k. This means, a high wrongly ex-
tracted energy would result in a low energy-assignment precision, while a low
energy-assignment recall is a consequence of failing to attribute energy to a given
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appliance when it is actually being used. Ideally, both Pk and Rk for appliance k
should be high and well-balanced. Therefore, Fk can be used to gauge the overall
correct extraction rate, taking into account both aspects of precision and recall.

5.5.2 Evaluation on Synthetic Data

We first consider the worst case in which known and unknown appliances
have similar power consumption. To validate the significance of the duration-
dependent component of RdFVTHMM in resolving the similarities in this regard,
power consumption data of 3 synthetic appliances with the same distribution
of power are generated for disaggregation purposes. Each appliance has two
states – ON and OFF – and two of the appliances have the same appliance state
duration distribution. The model parameters used for synthesising the data are
summarised in Table 5.1 and Table 5.2. For each synthetic appliance, the gener-
ated data is aggregated together to form the aggregate data, which will be used
as an input to the disaggregation process. A particular instance of the generated
synthetic data is shown in Figure 5.12.

For disaggregation with RdFVTHMM and FVTHMM, the parameters used
are exactly the same as those employed for generating the synthetic data, whereas
for RdFHMM and FHMM, the Markov state transition matrices used have self-
transition probabilities that are consistent with the mean state durations, i.e. ai,i =

(E[d] − 1)/E[d]. Table 5.3 shows the complete Markov state transition matrices
derived in this manner.

In the experiment, one of the synthetic appliances will be set aside as the
known appliance while the remaining two will be treated as appliances which

Table 5.1: Emission model of the synthetic appliances.

Synthetic
Appliance State, xt,k Mean, µ Standard

Deviation, σ

1, 2, 3
0 0.000 1.000
1 50.000 4.000

Table 5.2: State duration model of the synthetic appliances.

Synthetic
Appliance State, xt,k Shape, α Scale, β

1
0 4.500× 104 6.667× 10−3

1 1.333× 104 1.500× 10−2

2, 3
0 2.500× 102 2.000× 10−1

1 1.440× 102 1.667× 10−1
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Table 5.3: State transition matrices used for disaggregation under RdFHMM and FHMM.

(a) Synthetic appliance 1

State, xt,1 0 1
0 0.996 0.004
1 0.005 0.995

(b) Synthetic appliance 2 and 3

State, xt,2 0 1
0 0.980 0.020
1 0.042 0.958

we have no model for. This means, the state inference algorithm will only have
knowledge on the known appliance, even when the data to be disaggregated
contains contributions from the other two unknown appliances. The role of the
known appliance will be rotated between appliance 1, appliance 2 and appliance
3 to investigate the effect of the behaviour of the modelled appliance on the over-
all extraction process. The disaggregation accuracy is assessed using the preci-
sion and recall metric defined in Section 4.4.1, and comparison is made between
RdFDHMM, RdFHMM, FDHMM and FHMM, in terms of their respective ability
to deal with extreme cases of severe overlaps. For the robust models, a ρσ of 1000
and a ∆thres of 10 were used.

The extraction results for the synthetic data shown in Figure 5.12 are presented
in Figure 5.13, with the corresponding disaggregation accuracies outlined in Ta-
ble 5.4. From the figures, it can be seen that, when appliance 1 is the known
appliance, RdFVTHMM-dPBDT performs the best with the highest precision and
recall. This is because the state duration of appliance 1 is encoded in its model and
the state inference algorithm is able to exploit clear differences in state duration
characteristics to distinguish between the known appliance and unknown appli-
ances. In contrast, without the duration component in the model, RdFHMM-
dPBDT did not fare very well. In nearly half the time, it wrongly inferred the
contribution of the unknown appliances as appliance 1 (see Figure 5.13b).

Also, as expected, both the non-robust methods (i.e. FVTHMM-PBDT and
FHMM-PBDT) have poor results on average. It can be seen from Figure 5.14 that,
whenever power is consumed, the known appliance is inferred to be the contrib-

Table 5.4: Comparison of different methods when applied to the generated synthetic data.

Precision (%)/Recall (%)

Methods Known Appliance
1 2 3

RdFVTHMM-dPBDT 95.41/95.69 70.62/61.04 74.46/61.42
RdFHMM-dPBDT 31.57/22.40 48.05/79.93 66.39/69.24
FVTHMM-PBDT 56.06/96.28 42.67/95.55 45.02/96.00
FHMM-PBDT 56.06/96.28 42.67/95.55 45.02/96.00
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Figure 5.12: The generated synthetic data
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(a) Extraction of appliance 1 using
RdFVTHMM-dPBDT.
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(b) Extraction of appliance 1 using
RdFHMM-dPBDT.
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(c) Extraction of appliance 2 using
RdFvTHMM-dPBDT.
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(d) Extraction of appliance 2 using
RdFHMM-dPBDT.
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(e) Extraction of appliance 3 using
RdFVTHMM-dPBDT.
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(f) Extraction of appliance 3 using
RdFHMM-dPBDT.

Figure 5.13: Comparison between RdFVTHMM-dPBDT and RdFHMM-dPBDT in ex-
tracting different known appliances.
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Figure 5.14: Extraction of appliance 1 using FVTHMM-PBDT or FHMM-PBDT.

utor, even though the observed value is in reality due to unknown appliances.
This is because neither FVTHMM nor FHMM has the provision for unmodelled
contributions to be ignored. Since appliance 1 is the only known appliance in the
models used for state inference, the closest match (i.e. appliance 1) is simply cho-
sen. The resulting assignment to appliance 1 in all time instances lead to many
false positives and a low number of false negatives, producing the high recall and
low precision shown in the last two rows of Table 5.4.

When either appliance 2 or 3 takes on the role of the known appliance, the
RdFVTHMM-dPBDT method reduces in precision and recall. While this is not
surprising, it highlights that whenever severe overlaps occur in all three aspects –
state power distributions, Markov state transition probabilities and state duration
distributions, correct identification becomes difficult. Unless more information is
utilised (e.g. additional features), errors are to be expected. Fortunately, in a
real-world setting, such cases are rare, with most instances being overlaps in the
first two aspects, thus strengthening the usefulness of the state duration model in
resolving similarities between known and unknown appliances.

5.5.3 Evaluation on Real-World Data

We have chosen to use the publicly available REDD dataset [KJ11] for evaluating
how well the dPBDT algorithm with RdFVTHMM (RdFVTHMM-dPBDT) per-
forms on real-world data. The time range of data used for testing is shown in
Figure 4.18, while data outside the marked region is utilised in the training stage
to learn appliance models. Similar to the evaluation done in Chapter 4, house 5 is
not tested as plenty of data is missing (see Figure 4.17).

In the evaluation, three aspects of the proposed RdFVTHMM-dPBDT method
are explored. Firstly, the influence of the flatness ratio ρσ and the threshold ∆thres
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on the extraction accuracy is investigated. Secondly, we evaluate and compare
the method with other benchmark approaches. And lastly, we study how the
number of modelled appliances to be jointly extracted could affect the extraction
accuracy.

The role of the flatness ratio ρσ and the threshold ∆thres

To examine the role of ρσ and ∆thres in impacting the extraction accuracy,
RdFVTHMM-dPBDT is run multiple times on the test data of each house, each
time with different values of ρσ and ∆thres. We consider 15 evenly-spaced points
of ρσ from 10 to 4000 and 6 evenly-spaced points of ∆thres from 10 to 120. In each
round, one of the (∆thres, ρσ) pairs on this 6-by-15 lattice is used and the resulting
average F-score is computed across all appliances to be extracted, i.e. F =

∑K
k=1 Fk

K

with K being the number of appliances in question. Also computed are the av-
erage precision, P , and average recall, R. The top 5 most energy-consuming
appliances specific to each house from the training set are considered for extrac-
tion in each case (i.e. K = 5); the remaining appliances are unmodelled. Np,max is
fixed at 100 throughout the whole experiment.
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Figure 5.15: Variation of the average F-score, F , for each house.
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Figure 5.16: Variation of the average precision, P , for each house.

Figure 5.15, Figure 5.16 and Figure 5.17 show the variation of the average F-
score, the average precision and the average recall for each house over the lattice
of (∆thres, ρσ), respectively. From the F-score figure, it can be seen that there is
no single optimum pair, (∆∗thres, ρ

∗
σ), which is common across all houses. Though

not surprising given the different types of appliances contained in each house,
the houses all seemingly agree that less extreme values for ∆thres and ρσ should
be chosen. This is especially the case for ∆thres, since a value which is too large
encourages important changes in steady-state power to be ignored, while a value
which is too small allows non-stable power consumption values (due to tran-
sients) to be processed, thus affecting extraction accuracy negatively. In addition,
as ∆thres is also used as the maximum deviation from the moving average value
before steady-state condition is violated, a small ∆thres can prevent the steady-
state segmentation algorithm from locking-in on stable measurements with large
variance, incurring false negatives as a result.

As for the influence of ρσ, it was discovered that a large value generally re-
sults in a high recall but low precision (see Figure 5.17 and Figure 5.16), given
that most unmodelled appliances in the evaluation are found to be in the low
< 200W range. In particular, when the emission probability term is dominant
over the duration-dependent state transition term in the calculation of the parti-
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Figure 5.17: Variation of the average recall, R, for each house.

cle score (see (5.10)), the larger ρσ is more likely to cause actual contributions of
such low-powered unknown appliances to be assigned to modelled appliances
mistakenly. Therefore, there is a higher false positive rate amongst the modelled
appliances, leading to an overall lower precision. This is consistent with our de-
scription of ∆thres and ρσ in Section 5.3.2, where a large ρσ implies a Laplace distri-
bution which has its mass spread more widely. As such, the curves of the Gaus-
sian distributions corresponding to modelled appliances tend to cover that of the
Laplace distribution in the range of power consumption values closer to 0W (see
Figure 5.6). Since most of the unmodelled appliances are low in power consump-
tion, assignments of their contributions to modelled appliances are more likely
to be favoured. Hence, a large ρσ implies a higher recall at the expense of lower
precision, as both Figure 5.17 and Figure 5.16 confirm.

By the same argument, because a small ρσ results in a Laplace distribu-
tion with most of its mass concentrated around zero, modelled appliances with
small power consumption are more likely to be attributed to unmodelled loads
wrongly. However, the flip side is a lower chance of incurring a false positive.
Accordingly, this means a generally higher precision in exchange for a lower re-
call.
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The variation described thus far is more apparent if we take the mean of the
average F-score, average precision and average recall over all houses, as shown
in Figure 5.18. From this, it is clear that less extreme values of ∆thres and ρσ are
preferred to reach a well-balanced trade-off between precision and recall.
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Figure 5.18: Variation of the mean of F , P and R, computed across all houses.

Comparison with baseline approaches

Similar to the evaluation done with the synthetic data, a few baseline approaches
are compared against RdFVTHMM-dPBDT. We consider the original approach
proposed in Chapter 4, FVTHMM-PBDT, and the variant without duration infor-
mation, FHMM-PBDT. To gauge how the robust version of the former performs,
RdFHMM-dPBDT is also included in the analysis. For both RdFVTHMM-dPBDT
and RdFHMM-dPBDT, ∆thres of 32 and ρσ of 295 are used throughout this in-
vestigation by virtue of their maximum F-score shown in Figure 5.18a. As be-
fore, Np,max is fixed at 100 for all approaches, and only the top 5 most energy-
consuming appliances from the training set are modelled and extracted; the re-
maining loads contributing to the aggregate measurements are unmodelled.

In terms of the correct assignment rate (CAR), the extraction accuracies of all
approaches are summarised in Table 5.5, while Table 5.6 presents a more detailed
outlook of how well the modelled appliances are extracted in terms of precision
and recall. On average, the results indicate that RdFVTHMM-dPBDT outper-
forms the baseline methods. However, the outcome for house 6 is slightly sur-
prising, as it is the only house where the non-robust methods have a higher CAR
than that of the corresponding robust methods.

A closer look reveals a number of reasons. For outlets unknown2 in house
6, FVTHMM-PBDT and FHMM-PBDT have high recall but low precision (see
Table 5.6). That is, false positives are prevalent but false negatives are un-
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Table 5.5: CAR of different methods when applied to the REDD dataset

CAR Metric (%)

Methods House Average1 2 3 4 6
RdFVTHMM-dPBDT 84.96 91.05 78.37 80.89 79.47 82.95
RdFHMM-dPBDT 75.51 86.91 76.07 79.09 75.20 78.56
FVTHMM-PBDT 57.87 83.72 64.92 67.52 85.83 71.97
FHMM-PBDT 56.63 72.24 64.13 43.50 77.12 62.72

common. However, because CAR penalises wrong estimates of large power
consumption devices more, by virtue of its formulation in (4.14), and because
air conditioning’s power consumption dwarfs that of outlets unknown2,
any wrong inferences pertaining to the former would mask the effect of
wrong inferences related to the latter in the calculation of CAR. Seeing that
air conditioning is extracted with slightly better precision and recall by the
non-robust methods while both robust methods have lower recall in compar-
ison, the CAR is tipped towards the favour of FVTHMM-PBDT and FHMM-
PBDT, regardless of whether or not the substantially lower power-consuming
outlets unknown2 is extracted correctly.

As can be seen in Figure 5.19, there are in fact occasional misses by
RdFVTHMM-dPBDT in the extraction of air conditioning. Given that
air conditioning is the only device with power consumption beyond 2000W
in house 6 and it should be the easiest to detect, this observation is especially
surprising. Upon deeper investigation, it was found that the issue lies with the
steady-state segmentation algorithm. In particular, the power consumption of
air conditioning during steady-state operation has a large variance relative
to the employed ∆thres of 32 (see Figure 5.20). Therefore, as alluded to previ-
ously in the previous investigation with regards to the use of small ∆thres, the
steady-state segmentation algorithm is unable to lock-in on a stable value. In this
regard, the contribution of air conditioning during its steady-state interval
is ignored and treated as originating from unmodelled loads mistakenly.

To confirm this hypothesis, RdFVTHMM-dPBDT is rerun on house 6 but
now, with an increased ∆thres of 76. The new CAR is 88.44%, a marked im-
provement over the previous case. In terms of the precision and recall of
air conditioning, both registered at 98.40% and 97.90%, respectively. How-
ever, the average precision and recall of house 6 dropped to 69.32% and 57.20%,
owing to the lower precision and recall of outlets unknown1: 28.78% and
0.33%. This is a result which is linked to the fact that the power consumption



Page 178 Chapter 5. ROBUST EXTRACTION OF APPLIANCE POWER

Table
5.6:Precision

and
recallofdifferentm

ethods
w

hen
applied

to
R

ED
D

dataset.

H
ouse

Top
5

A
ppliances

Precision
(%

)/R
ecall(%

)
R

dFV
TH

M
M

-dPBD
T

R
dFH

M
M

-dPBD
T

FV
T

H
M

M
-PBD

T
FH

M
M

-PBD
T

1

refrigerator
97.21/91.23

89.03/90.58
67.94/71.62

65.94/75.26
dishw

asher
73.07/96.85

50.34/92.77
45.01/94.18

40.93/86.28
kitchen

outlets2
90.85/79.63

86.55/79.23
54.46/84.10

55.77/83.09
lighting1

76.14/71.69
62.07/61.09

44.44/70.11
43.52/64.36

w
asher

dryer3
94.23/75.88

76.05/98.69
72.67/99.48

72.67/99.48
A

verage
86.30/83.05

72.81/84.47
56.90/83.90

55.77/81.69

2

kitchen
outlets

1
81.15/22.07

29.04/24.55
77.60/79.31

46.41/83.64
lighting

92.15/81.12
84.15/78.88

83.93/64.38
60.63/59.61

m
icrow

ave
93.36/73.67

88.32/65.90
93.51/90.13

64.51/88.97
kitchen

outlets
2

99.44/95.50
99.44/95.50

65.52/98.11
80.98/98.11

refrigerator
96.05/94.86

92.27/94.03
82.64/95.02

79.34/76.00
A

verage
92.43/73.45

78.65/71.77
80.64/85.39

66.38/81.27

3

electronics
78.86/87.04

82.56/88.03
51.35/91.72

51.12/92.69
refrigerator

81.12/71.61
73.50/68.37

59.34/70.33
54.66/65.22

lighting2
60.76/33.59

44.04/32.18
40.18/54.72

36.06/53.40
w

asher
dryer

84.53/77.02
83.89/77.02

71.37/77.40
86.24/76.18

lighting4
63.16/26.21

52.19/57.28
58.18/44.37

65.08/55.14
A

verage
73.69/59.09

67.24/64.58
56.09/67.71

58.63/68.53

4

lighting1
52.16/14.52

19.31/28.38
28.33/35.04

20.92/41.15
furnace

84.17/85.25
86.72/78.89

80.18/70.77
75.04/52.14

stove
57.75/91.04

63.51/83.87
35.93/93.06

20.13/92.55
lighting2

71.01/86.01
79.34/62.89

74.79/64.87
75.16/63.40

kitchen
outlets2

91.15/79.47
75.85/64.25

56.31/80.91
31.82/39.99

A
verage

71.25/71.26
64.94/63.66

55.11/68.93
44.61/57.84

6

refrigerator
66.39/67.58

66.17/67.78
63.44/61.42

57.82/47.42
outlets

unknow
n1

77.40/94.94
22.58/3.27

74.62/66.06
72.96/85.76

outlets
unknow

n2
48.52/42.97

42.57/7.47
39.17/84.41

31.15/85.67
lighting

98.97/57.52
98.87/58.51

97.61/90.08
96.23/68.14

air
conditioning

98.46/64.05
45.64/45.76

97.97/97.94
98.40/97.94

A
verage

77.95/65.41
55.17/36.56

74.56/79.98
71.31/76.98



Page 179

(a) The ground truth for a day’s worth of data from house 6 of the REDD
dataset.

(b) Estimated using RdFVTHMM-dPBDT

Figure 5.19: False negatives associated with the extraction of air conditioning from
house 6.

Figure 5.20: A closer look at the power consumption of air conditioning from house
6.
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of outlets unknown1 during operation is predominantly concentrated in the
range from 40W to 120W, a portion of which falls below the ∆thres of 76, and
hence, the extremely low recall.

Further evidence on why this is due to the steady-state segmentation al-
gorithm is the observation that both robust methods have low recall for
air conditioningwhereas both non-robust methods have high recall and pre-
cision. As FVTHMM-PBDT and FHMM-PBDT do not include a steady-state seg-
mentation procedure and both use the raw unprocessed aggregate power mea-
surements as they arrived, the lower than expected recall of air conditioning

resulting from the weakness in the steady-state segmentation algorithm do not
occur.

Overall, this suggests that a more sophisticated steady-state segmentation al-
gorithm, which also dynamically takes into account changes in variances, is re-
quired. We envision its inclusion as part of RdFVTHMM-dPBDT, in place of the
existing segmentation algorithm, would prevent issues like this from occurring,
thus further improving extraction accuracy.

One other interesting observation that can be made with regards to
outlets unknown2 is that it appears to correspond to many appliances instead
of just one. This may explain why portions of its emission distribution which are
significant in value, cover a large part of the power consumption domain between
0W and 500W (see Figure 5.21) and it may also be the reason why its distribution
has multiple modes which are less well-defined. Therefore, modelling is a more
challenging task and the fitted distribution may not be optimal for state inference,
leading to the generally poor extraction results of outlets unknown2 across the
methods considered.

It is worth noting that, with the exception of house 6, the precision and re-
call for the extraction of refrigerators by RdFVTHMM-dPBDT are consistently
high across all houses (the kitchen outlets2 submeter of house 4 actually
corresponds to a refrigerator, upon closer inspection). Being an appliance which
is operating in a cyclic manner, this is not totally surprising, considering that
the state duration model is able to capture this characteristic well. As for the
refrigerator of house 6, there may be a number of factors contributing to the
lower than expected precision and recall. The previously mentioned wide span of
outlets unknown2’s emission distribution could be a reason. However, more
investigations need to be conducted to yield a definitive answer.

Also interesting from Table 5.6 is the observation that all non-robust methods
have consistently lower average precision than average recall. This is a conse-
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Figure 5.21: Emission model for outlets unknown2 of house 6 in the REDD dataset.

quence of absorbing actual contributions of unmodelled loads into estimated con-
tributions of modelled appliances, in exchange for the unintentional side effect of
lowering the likelihood of false negatives. Therefore, more emphasis should be
placed on the precision metric than the recall metric, when modelled appliances
are to be extracted in the presence of unmodelled loads.

Number of appliances to extract

The number of modelled appliances to be jointly extracted, K, and its effect on
the overall extraction accuracy were also studied. Like before, Np,max of 100, ∆thres

of 32 and ρσ of 295 are employed for this investigation. For the experiment, K
is varied from 1 to 10 for each house, except for house 2, since it has a maxi-
mum of 7 appliances. Therefore, K is only considered up to 7 for that particular
case. At each round, the top K most energy-consuming appliances are chosen to
be modelled and extracted; the remaining loads are unmodelled and treated as
appliances whose their characteristics are unknown.
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Figure 5.22 shows variation in the average F-score, F , of RdFVTHMM as the
number of appliances to be jointly extracted, K, increases. The overall trend is
that the increase in K results in a decrease in F . However, the downward trend
for each house is not strictly monotonic. This may be explained by the decision
that only the top K most energy-consuming appliances are selected to be mod-
elled and extracted, whereas there are many different combinations of K appli-
ances out of the maximum number of submeters in each house, Kmax, in reality.
As the selection of K appliances in this way is only a single realisation out of the
many different combinations, the inherent randomness might have contributed
to the non-monotonicity. Another possible reason is, for some combination of
appliances, having an additional modelled load may increase or reduce the po-
tential confusion between competing solutions, depending on whether or not the
newly modelled load is easier or harder to detect (see Figure 5.24). Nevertheless,
the general downward trend is apparent if we consider the mean of the average

1 2 3 4 5 6 7 8 9 10
40

50

60

70

80

90

100

Figure 5.22: Average F-score, F , of RdFVTHMM-dPBDT against the number of appli-
ances to extract, K. The top K most energy-consuming appliances for each house is
considered in each case.
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F-score taken over all houses, as shown in Figure 5.23a. By itself, the decreasing
trend could be attributed to the growth in the solution space as the number of
appliances to extract increases; there is more potential for mix-ups in the state es-
timates of appliances which are modelled, leading to the likely case of more false
positives and false negatives, as confirmed by the declining trend of both average
precision and average recall in Figure 5.23b and Figure 5.23c respectively.

Interestingly, the corresponding average F-score for FVTHMM-PBDT shows
an upward trend before appearing to taper off at the end, so does its average
precision. If we recall that FVTHMM-PBDT does not explicitly account for the
existence of unmodelled loads, this result is expected; contributions of power con-
sumption, regardless of whether or not they are actually from unmodelled loads,
get assigned by the algorithm to the closest matching modelled appliances. For
small K, few modelled appliances absorbed the contributions of many unmod-
elled appliances, resulting in severe false positives. Early on, this dominates the
effect of the growth in solution space, which is why an increase in average preci-
sion, instead of a decrease, is seen. AsK increases, the potential for false positives
and false negatives due to assignments of unknown contributions to modelled
appliances decreases, while that of the problem relating to more competing so-
lutions begins to dominate. As a result, the rate of increase in average precision
reduces before tapering off. It is hypothesised that after a certain K beyond 10,
the average precision of FVTHMM-PBDT would start to decrease. However, ad-
ditional work is required to confirm this.

Relative to RdFVTHMM-dPBDT, the higher average F-score for FVTHMM-
PBDT when K ≥ 7 is largely attributed to the high recall in spite of the in-
crease in the number of appliances to extract. While this may appear to show
that RdFVTHMM-dPBDT does not perform as well as FVTHMM-PBDT, it is not
true. In fact, the large recall is simply an artefact of the modelled appliances ab-
sorbing the power contributions unsparingly. Therefore, as mentioned at the end
of the previous investigation, where comparisons with baseline approaches are
made, more attention should be devoted to the precision metric when non-robust
and robust counterparts are compared.

The appliance-wise F-scores of RdFVTHMM-PBDT for this investigation are
also recorded, and they are presented in Figure 5.24. Several important observa-
tions can be made from the results. Firstly, it was found that the contributions of
a number of appliances could be robustly estimated, even as the number of mod-
elled appliances to be jointly extracted increases. In particular, refrigerators are
generally able to maintain high F-scores. The same can be said for other devices
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with large power consumption such as furnaces. This gives credence to the sug-
gestion that future work on iterative disaggregation should first aim to subtract
away inferred contributions of appliances which are known to be distinctive (e.g.
refrigerators) and known a priori to draw large amount of power. Subtracting
away these initial estimates from the aggregate measurements before extracting
from the newly adjusted aggregate signal should provide better inferences of the
remaining devices, especially small powered loads (e.g. lighting).

Secondly, the F-score associated with most appliances are relatively stable
over the different values of K. This seemingly suggests that the proposed
method, RdFVTHMM-dPBDT, is robust against the changing composition of the
unmodelled loads. However, given that the result presented in Figure 5.24 is just
one instance of choosing the K appliances to be modelled and extracted, more
investigations on how the results vary over all

(
Kmax
K

)
combinations have to be

performed as part of any future work.

5.6 Summary

The techniques presented in this chapter have been shown to be beneficial for
extracting the power contributions of appliances of interest, even in the presence
of unknown loads. By combining the FVTHMM-PBDT framework described in
Chapter 4, the noise model adapted from the field of compressed sensing, and a
steady-state segmentation algorithm, the robust extension, RdFVTHMM-dPBDT,
is able to infer the power consumption of modelled or known appliances accu-
rately, while benefiting from the real-time and efficient computation afforded by
the PBDT algorithm.

The method is also practically appealing, as there is no longer the requirement
to obtain the models for each and every appliance in a residential unit before ac-
curate disaggregation could be performed. Instead, all that is needed is to specify
the models for a few important loads that should be detected and the approach is
able to extract their power contributions from the aggregate measurements; the
power contributions of the remaining unmodelled appliances are implicitly as-
signed to a robust mixture component whose change-in-values is imposed with a
sparsity constraint.

The evaluation of RdFVTHMM-dPBDT with synthetic data and real-world
data has uncovered a number of significant results. Firstly, we have demonstrated
that RdFVTHMM-dPBDT could distinguish between power values of modelled
and unmodelled appliances which are similar, unlike the baseline approaches.
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Secondly, robust extraction of the power contributions of modelled loads has been
shown to be possible, as evident from the stable F-scores of many appliances
when the composition of unmodelled loads changes.

Although the disaggregation outcomes were in general excellent, it was found
that errors could be further reduced if an improved procedure for the extraction
of steady-state segments and the detection of state changes is used. Examples in-
clude an edge detector with a threshold that is adaptive, or perhaps, even a simple
extension with a threshold that scales proportionally with the noise level and the
magnitude of the aggregate measurements. However, such improvements are
reserved for future work. Further, it is also hoped that more studies are made
in relation to the systematic selection of the flatness ratio, and by extension, the
rate parameter of the Laplace distribution governing the variation of the robust
mixture component.
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Figure 5.23: Variation of the mean of F , P and R, computed across all houses.
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Figure 5.24: The appliance-wise F-score, Fk, of RdFVTHMM-dPBDT as the number of
appliances to be jointly extracted, K, increases.
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CHAPTER SIX

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we have looked at the problem of Non-intrusive Load Monitoring
(NILM) – a class of load-monitoring techniques by which whole-house/aggregate
energy measurements are mathematically decomposed or disaggregated into per-
appliance energy usage information. The basic premise is that, activations and
deactivations of appliances can be detected as fluctuations in the aggregate signal,
and the source of such signatures can be identified through a carefully-designed
software algorithm.

In contrast to more hardware-centric methods whereby each appliance has
its own a dedicated monitoring device attached, only a single sensor or energy
monitor is required in NILM to determine the relative proportion of energy con-
sumed by each appliance. As such, NILM is a non-invasive, cost-effective means
of load monitoring and has been envisioned to be an important software counter-
part to disaggregate whole-house energy consumption data from utility-installed
smart meters, thereby making actionable information (e.g. itemised electricity
bills) more widely accessible to homeowners, and empowering them with the
ability to identify sources of energy wastage more accurately.

Although numerous NILM approaches have been proposed in the literature
prior to the investigation conducted in this thesis, several important issues (as
highlighted in Chapter 1 and Chapter 2) were still present to impede practical de-
ployments and the widespread adoption of NILM in the real-world setting. For
one, especially in situations where only low-frequency aggregate measurements
are available (e.g. smart meters), there is a lack of study on how appliances with
similar power signatures can be differentiated. Secondly, methods for efficient
and real-time inference of appliance-level measurements under complex but more
powerful models (needed to address the first issue) have been limited. Thirdly,
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apart from the prominent work by Kolter and Jaakkola [KJ12], it is often assumed
that all appliances in a residential unit can be modelled, and unknown or unmod-
elled loads (e.g. newly-installed appliances) are non-existent; the more challeng-
ing problem of extracting the power contributions of known appliances in the
presence of outlying values owing to these unknown loads is rarely explored.

To that end, we have developed and presented a new robust real-time disag-
gregation framework in the preceding chapters of this thesis, with the following
main contributions.

In Chapter 3, we have proposed an alternative variant of hidden semi-Markov
model for representing appliance behaviour: factorial variable transition hidden
Markov model (FVTHMM). It incorporates the duration information of states of
appliances to resolve the aforementioned similarities in signatures. However,
unlike existing hidden semi-Markov model used in NILM, such information is
not used directly. Instead, the hazard function is employed as a time-varying,
duration-dependent state transition probability, thus enabling the incremental
calculation of probability values at any given time step. The significance of this is,
it allows improved identification of appliances with similar power consumption,
while providing a model formulation which is suitable for real-time disaggrega-
tion, as the experimental results have shown.

In Chapter 4, we presented a new tool – particle-based distribution truncation
(PBDT) – that could be used to perform efficient computations and inferences
on the more powerful model developed as part of Chapter 3. The method com-
bines the survival-of-the-fittest concept of particle filters and the dynamic pro-
gramming paradigm of the Viterbi algorithm, allowing estimates (represented by
particles) at each time step to be tracked efficiently. By means of a number of
heuristics and the sharing of computation results enabled by exploiting the dis-
tribution of particles, the PBDT algorithm is able to scale well computationally;
experimental results illustrated that an average per-sample processing time of
below 1 second is achievable for houses with as many as 20 billion states while
attaining an average disaggregation accuracy of approximately 80%. In addition,
we have demonstrated empirically that the time complexity of the algorithm is
approximately linear in the number of appliances, validating its scalability and
its usefulness for real-world NILM applications involving many appliances.

Following the disaggregation results of real-world data using PBDT for
FVTHMM (i.e. FVTHMM-PBDT), Chapter 4 also investigated the benefits of ex-
plicitly modelling the non-stationary variation in the power measurements for
a given state of an appliance. Specifically, we no longer assume that the mean
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power consumption for a particular state is constant. Instead, it is now assumed
to vary according to the state dwell time, much like the duration-dependent state
transition probability. This allows gradual decreases in power consumption, like
those seen during the ON cycles of refrigerators, to be used as features for im-
proving disaggregation. In a preliminary study conducted, a disaggregation ac-
curacy of 85% (an additional 5% from before) has been shown.

Finally, Chapter 5 looked at the problem of detecting modelled appliances in
the aggregate measurements when unknown or unmodelled loads are present.
We extended the base model, FVTHMM, proposed in Chapter 3 with a noise
model that assumes sparse transitions for the unmodelled devices. Together with
the addition of the change in power values as observed variables, the outcome
is a robust version of FVTHMM, which we called RdFVTHMM. Further, due to
a number of problems related to the direct application of the original PBDT al-
gorithm under RdFVTHMM, a modified variant of the same algorithm, dPBDT,
is formulated. In particular, it includes a steady-state segmentation procedure
based on Hart’s work [Har85] to reduce the sensitivity of the algorithm towards
transient power values (e.g. power surge and slow rise-time). Additionally, the
generation of particles is no longer performed at each time step. Rather, it is
only done at times when states are inferred to change. All these allow the power
contributions of appliances of interest (e.g. modelled appliances) to be robustly
extracted from the aggregate measurements in real-time, without having to spec-
ify or learn the models of unknown loads. In the evaluation, experimental results
validated the stability of the estimates for appliances whose behaviour is distinc-
tive, confirming the robustness of the proposed disaggregation framework.

6.2 Future Research Directions

The aforementioned contributions have culminated in a robust disaggregation
framework and have been shown to be promising in various aspects. The ability
to extract power contributions of appliances efficiently in real-time while being
resilient against perturbations owing to unknown loads is beneficial to the real-
isation of the many applications set out in Chapter 1. For example, new appli-
ances, either introduced by guest visits or new purchases, can no longer severely
affect the detection accuracy of existing appliances. Also noteworthy is the abil-
ity to perform tracking of appliance usage in real-time, opening the potential for
various smart home use cases.
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However, there are still open problems to be addressed and a number of im-
provements that could be made, opening avenues for future exploration. There-
fore, in this section, equipped with the insights gained from this research, we
propose several directions on which further work could be taken.

Alternate Notion for the States of Appliances

For simplifying the modelling process, the work presented in this thesis and those
of existing approaches in NILM [MHHE11, KJ11, EBE15, MPB+16, KDM+16] have
employed the notion that a state of an appliance should correspond to a unique
cluster of power values. However, this need not be the case in reality. As we have
seen in Chapter 3, for example, the dishwasher consumes 0W for long periods
of time when it is not being used, and it can also do the same for short time
intervals, interleaved between non-zero power values within an operating cycle.
This suggests that a distinction in states could be made for power values of 0W,
depending on whether they are embedded within an operating cycle or not.

Likewise, the stove shown in Chapter 3 has a longer pulse of 400W at the start,
followed by shorter pulses of the same magnitude, whenever it is being operated.
Considering that these observations physically correspond to the process of the
initial heating phase and the subsequent phase where the temperature is being
regulated, it seems appropriate to introduce another state for differentiating be-
tween the two 400W observed at different parts of the operating cycle.

While we speculate that doing so may improve the detection of appliances
working according to the finite state machine principle, introducing more than
one state per power level in such a way would inflate the state space of the model
significantly, potentially slowing down the speed of the state inference process.
We believe, however, that the PBDT algorithm developed as part of this thesis
would facilitate this alternate notion of states to be realised, given its efficiency
and scalability when performing state inference over a large state space.

Improved Emission Model

In Chapter 4, it was noted that the observed disaggregation errors are largely a
consequence of the difficulty in modelling the variation in power consumption
accurately. In particular, some appliances have per-state power consumption dis-
tribution that does not reflect the Gaussian assumption well; the underlying dis-
tribution is skewed with possible heavy tails. While we have partially addressed
this by proposing the use of a Gaussian distribution whose mean varies exponen-
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tially with the state dwell time, there is much scope for more work to be done in
exploring other forms apart from exponential, the inclusion of variances that are
also dependent on the state dwell time, and the integration with RdFVTHMM
proposed in Chapter 5. Additionally, it is interesting to consider non-parametric
variants based on Gaussian Processes [Ras04] for learning the appropriate forms
from the training data.

Such a development is not only important for reducing errors but also could
be useful in the tracking of continuously-variable loads, of which examples in-
clude heating, ventilation and air-conditioning (HVAC) systems and power drills.
Even though these appliances are relatively uncommon in residential settings, it
is envisioned that a generalised segmental emission model formulated in such a
way, could spur future research on NILM systems targeted towards commercial
and industrial applications. Further, the outcome might be an attractive alter-
native to the work of Laughman et al. [LKC+03], where current waveform data
collected at high sampling rates is required to calculate the waveform harmonics
necessary for extracting continuously-variable loads.

In more extreme cases, we can also use a hybrid generative-discriminative
version of FVTHMM, where the appliance state transitions are still governed by
the duration-dependent state transition probabilities in the generative sense but
the emission model is now of the discriminative form. Doing so removes the
burden of having to specify how the power consumption is distributed, reducing
disaggregation errors due to deviations from modelling assumptions. A great
example of how this could be achieved is the use of multilayer perceptron for
directly learning a function whose input is the aggregate power consumption of
a certain time step and the output is the state estimate of each appliance involved.

One other possibility is to use the Cauchy distribution for the emission model
instead of the Gaussian distribution. This should solve issues related to heavy-
tailed observations.

Fully Unsupervised or Semi-supervised Learning of Model Parameters

In Chapter 3, the learning of model parameters for FVTHMM is conducted with
the assumption that training data in the form of appliance-level power measure-
ments are available. In the real-world, however, the availability of such data may
be limited and model parameters have to be inferred from only the aggregate
measurements (i.e. completely unsupervised). For this reason, future efforts
could be devoted to the formulation of a complete Expectation-Maximisation
(EM) algorithm for FVTHMM, and a Monte Carlo implementation of the learning
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procedure, given the intrinsic computational intractability of the said EM algo-
rithm under FVTHMM.

Alternatively, the work by Johnson and Willsky [JW13] for the factorial ver-
sion of the explicit duration HMM (FEDHMM) could be adapted and used for
learning the model parameters in an unsupervised manner, since EDHMM can
be transformed into an equivalent VTHMM [Joh05]. Therefore, the FVTHMM can
be represented as a FEDHMM and unsupervised learning could be performed us-
ing the existing approach provided by Johnson and Willsky [JW13], while during
disaggregation, online estimation of states could be done under FVTHMM, com-
bining the best of both approaches.

Yet another way forward is to use a semi-supervised approach like in the
work by Parson et al. [PGWR14], together with our proposed FVTHMM. Generic
model parameters for classes of appliances whose behaviours can be generalised
are learned over a diverse set of training data with similar devices of different
brands. This allows a single common set of model parameters to be used across
many houses, with no house-specific training data needed during the actual de-
ployment of a NILM system; the generic model parameters are automatically
tuned to house-specific model parameters using portions of the aggregate mea-
surements where the individual power consumptions of a given appliance can be
reliably extracted (e.g. during the night when less appliances are actively used).
However, this can be further improved upon by using the proposed robust frame-
work discussed in Chapter 5, potentially allowing power contributions of appli-
ances to be extracted reliably at most times, even when the activity rate of appli-
ances is high during the day. As such, the combination of the work of Parson et
al. [PGWR14] and ours is an interesting task to pursue in the future.

Iterative Disaggregation using the Developed Robust Extraction Scheme

Iterative disaggregation is a concept that has been mentioned by Wong et al.
[WWDc13] and Parson et al. [PGWR12]. The power measurements of appliances
are not jointly extracted from the aggregate data. Instead, they are extracted iter-
atively by successive subtractions of the aggregate measurements. For example,
inferred power contributions of an appliance is subtracted from the aggregate
measurements and at each round, the aggregate measurements become simpler,
facilitating further extractions of the remaining appliances. While the concept is
interesting and should allow better detection of low-powered devices which are
overwhelmed by the noise levels of other high-powered loads, the development
of iterative approaches has been limited. We believe that the robust method pre-
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sented in Chapter 5 could be used as the basis for future implementations of a
robust iterative disaggregation technique, whereby the power contributions of
appliances are extracted and subtracted in the same way that the idea was origi-
nally defined in [WWDc13] and [PGWR12] but in a substantially more robust and
systematic manner.

Methods for Fusion Point Tracking in PBDT

In Chapter 4, the PBDT algorithm has been introduced to be a real-time and com-
putationally efficient method for state inferences under powerful and complex
models such as the proposed FVTHMM. Although we have provided the theo-
retical foundations in which backtracking can be performed from points in time
where ancestors of descendant particles are common (i.e. fusion points), more
work could be done for exploring efficient methods for tracking fusion points.
Among others, a few important questions are

• How often do we search for fusion points?

• Should the method search for fusion points every time a new set of particles
is generated?

• Can a rule be learned dynamically from the variation in the historical time
lag data between the fusion point and the current time step?

Interestingly, these questions are closely related to the problem of garbage collec-
tion in computer science [WJNB95]. An example is the frequency in which mem-
ory spaces that are no longer referenced by a program are automatically identified
and freed.

Incremental Hashing in PBDT

We have used the MurmurHash3 algorithm [App16] for hashing the extended
system states and the extended device state in our implementation of PBDT. As
multiple hashing operations are performed in each time step and the elements
of the counter vector contained in a particle are mostly an increment of those
contained in the parent particle, it may be beneficial to consider the use of in-
cremental hashing algorithms [BGG94, BM97]. The rationale is that, previously
computed hash values (e.g. for the parent particle) could be used to incrementally
calculate the hash values for the current particle more efficiently, with potential
for further improved computational performance of the PBDT algorithm.
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A Parallel PBDT Algorithm

For practitioners, it may be of interest to implement PBDT as a parallel algorithm,
given that a group of parent particles is independent with one another (see Chap-
ter 4), as far as the generation of new particles is concerned. Therefore, simulta-
neous and independent processing, with a multi-threaded implementation or a
hardware chip-level implementation using field-programmable gate arrays (FP-
GAs), is worthwhile for further reductions in runtime and further improvements
in computational scalability.
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DERIVATIONS FOR MML

This appendix provides the derivations of the message length expression and the
formulation of the Expectation-Maximisation (EM) algorithm for minimising the
message length as used in Chapter 3. For the problem considered, S duration
data points, [ds]

S
s=1, of state i of a certain appliance are modelled with a mixture

of Li Gamma distributions. The value of Li and the corresponding parameters
Θi governing the mixture model are unknown. They are to be estimated using
the minimum message length (MML) principle; values of Li and Θi are chosen
such that the length of the message consisting of the model parameters Θi and
the encoded data [ds]

S
s=1 is minimised.

A.1 Message Length Formulation

In MML, the message composed of two parts, namely, the model parameters Θi

and the data [ds]
S
s=1 encoded using Θi. As such, the generic expression of the total

message length is

I(Θi, [ds]
S
s=1) = I(Θi) + I([ds]

S
s=1 | Θi), (A.1.1)

where I(Θi) and I([ds]
S
s=1 | Θi) are the lengths of the respective parts.

The message length is simply the information content of the message, with
additional terms resulting from the precision used for encoding the model pa-
rameters and the data points (see [WF87] and [KA15]). Accordingly, the message
lengths for the encoded data and the model parameters are

I(Θi) =
p
2

log qp − log

 p(Θi)√∣∣F (Θi)
∣∣
 (A.1.2)
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I([ds]
S
s=1 | Θi) = −S log ε+

p
2
−

S∑
s=1

log(p(ds | Θi)), (A.1.3)

where p is the number of free parameters in the model, qp is the lattice quantisation
constant in p-dimensional space (see [CS84]), ε is the precision of the encoded data
points and

∣∣F (Θi)
∣∣ is determinant of the Fisher information matrix. Note that we

have chosen to use the natural log instead of log of base 2. Therefore, the message
lengths have units of nats as opposed to bits.

To simplify the subsequent derivations, terms that are independent of Θi are
denoted by constants, C1 and C2, such that

I(Θi) = − log

 p(Θi)√∣∣F (Θi)
∣∣
+ C1 (A.1.4)

I([ds]
S
s=1 | Θi) = −

S∑
s=1

log(p(ds | Θi)) + C2. (A.1.5)

For I([ds]
S
s=1 | Θi), each of the summands in the first term of the right-hand

side in (A.1.5) is the log likelihood of Θi given an observed data point ds; the like-
lihood is characterised by a mixture of Li Gamma probability density functions,
g(d;αl,i, βl,i), i.e.

p(ds | Θi) =

Li∑
l=1

ml,ig(d;αl,i, βl,i)

=

Li∑
l=1

ml,i
d
αl,i
s exp(−ds/βl,i)
β
αl,i
l,i Γ(αl,i)

,

(A.1.6)

where αl,i is the shape parameter, βl,i is the scale parameter and ml,i is the mix-
ing coefficient of the lth mixture component. Hence, the message length for the
encoded data points resulting from the use of a given Θi is

I([ds]
S
s=1 | Θi) = −

S∑
s=1

log

 Li∑
l=1

ml,ig(d;αl,i, βl,i)

+ C2. (A.1.7)

On the other hand, to derive I(Θi), we follow the work of Oliver et al.
[OBW96] and the work of Kasarapu and Allison [KA15] in approximating

∣∣F (Θi)
∣∣

as the product of the determinant of the Fisher information matrix for the each



Page 199

mixture component and each model parameter. If Θi = [ml,i, αl,i, βl,i]
Li
l=1, then

∣∣F (Θi)
∣∣ ≈ Li∏

l=1

∣∣F (ml,i)
∣∣∣∣F (αl,i)

∣∣∣∣F (βl,i)
∣∣ . (A.1.8)

Like in [KA15], we also assume that the model parameters are mutually indepen-
dent. Therefore,

I(Θi) = I([ml,i, αl,i, βl,i]
Li
l=1)

=

Li∑
l=1

log

(
p(ml,i)√
F (ml,i)

)
︸ ︷︷ ︸

I([ml,i]
Li
l=1)

+

Li∑
l=1

log

(
p(αl,i)√
F (αl,i)

)
︸ ︷︷ ︸

I([αl,i]
Li
l=1)

+

Li∑
l=1

log

(
p(βl,i)√
F (βl,i)

)
︸ ︷︷ ︸

I([βl,i]
Li
l=1)

+C1.

(A.1.9)

According to [WB68] and [KA15], I([ml,i]
Li
l=1) could be further simplified to

I([ml,i]
Li
l=1) =

Li − 1

2
log(S)− 1

2

Li∑
l=1

log(ml,i)− log(Li − 1)! (A.1.10)

For I([αl,i]
Li
l=1) and I([βl,i]

Li
l=1), we use the results from the work of Agusta and

Dowe [AD03], ∣∣F (αl,i, βl,i)
∣∣ =

S2

β2
l,i

(
αl,iψ

(1)(αl,i)− 1
)
, (A.1.11)

where ψ(u)(αl,i) is the uth order polygamma function defined as

ψ(u)(αl,i) =
du+1

dαu+1
l,i

log
(
Γ(αl,i)

)
. (A.1.12)

Also, from the same work, the prior probability for αl,i is assumed to be

p(αl,i) =
2

π(1 + α2
l,i)

(A.1.13)

over the support of (0,∞], whereas the prior probability for βl,i is taken to be

p(βl,i) =
1

βl,i
(A.1.14)
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over the support of [exp(−8), exp(8)]. Altogether, after substituting the terms, we
get

I(Θi) =
Li − 1

2
log(S)− 1

2

Li∑
l=1

log(ml,i)− log(Li − 1)!

−
Li∑
l=1

log

(
1

βl,i

)
−

Li∑
l=1

log

(
2

π(1 + α2
l,i)

)

+
1

2

Li∑
l=1

log

(
S2

β2
l,i

[
αl,iψ

(1)(αl,i)− 1
])

+ C1,

(A.1.15)

like shown in (3.31) of Chapter 3.

With both I([ds]
S
s=1 | Θi) and I(Θi) specified in A.1.7 and A.1.15 respectively,

the total message length I(Θi, [ds]
S
s=1) is

I(Θi, [ds]
S
s=1) =

Li − 1

2
log(S)− 1

2

Li∑
l=1

log(ml,i)− log(Li − 1)!

−
Li∑
l=1

log

(
1

βl,i

)
−

Li∑
l=1

log

(
2

π(1 + α2
l,i)

)

+
1

2

Li∑
l=1

log

(
S2

β2
l,i

[
αl,iψ

(1)(αl,i)− 1
])

−
S∑
s=1

log

 Li∑
l=1

ml,ig(ds;αl,i, βl,i)

+ C,

(A.1.16)

where C refers to the constants of the overall expression which are independent
of Θi.

A.2 Message Length Minimisation Using the EM Al-

gorithm

The minimisation of the total message length I(Θi, [ds]
S
s=1) with respect to Θi is

mathematically intractable since the model parameters cannot be expressed in
closed form. To that end, auxiliary variables [us]

S
s=1 specifying the assignment of

each data point ds to a mixture component are introduced. If ds is thought to be
generated by the lth mixture component, then us = l. In this way, I([ds]

S
s=1 | Θi)
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is modified to

I([us, ds]
S
s=1, | Θi) = −

S∑
s=1

log(p(us = l)g(ds;αl,i, βl,i)), (A.2.1)

and thus, the modified total message length expression is

I([us, ds]
S
s=1,Θi) =

Li − 1

2
log(S)− 1

2

Li∑
l=1

log(ml,i)− log(Li − 1)!

−
Li∑
l=1

log

(
1

βl,i

)
−

Li∑
l=1

log

(
2

π(1 + α2
l,i)

)

+
1

2

Li∑
l=1

log

(
S2

β2
l,i

[
αl,iψ

(1)(αl,i)− 1
])

−
S∑
s=1

log(p(us = l)g(ds;αl,i, βl,i)) + C.

(A.2.2)

The problem is then to solve

Θ̂i = arg min
Θi

I([us, ds]
S
s=1,Θi). (A.2.3)

However, because us is also unknown for all s, the minimisation has to be
done iteratively via the EM algorithm. For the E-step, we need to derive the
auxiliary function Q(Θi,Θ

[n]
i ), that is, the expectation of −I([us, ds]

S
s=1,Θi) with

respect to the posterior probability r[n]
ls = p([us]

S
s=1 | [ds]

S
s=1,Θ

[n]
i ) where Θ

[n]
i is the

model parameters obtained from the previous iteration or the nth iteration. Note
that the negative of I([us, ds]

S
s=1,Θi) is used since the maximisation operation is

performed in the EM algorithm while the original problem in (A.2.3) is a minimi-
sation problem.

Formally, the auxiliary function takes the form

Q(Θi,Θ
[n]
i ) = E

[
−I([us, ds]

S
s=1,Θi) | [us]Ss=1,Θ

[n]
i

]
= −

Li∑
u1=1

· · ·
Li∑

uS=1

I([us, ds]
S
s=1,Θi)

S∏
s=1

r
[n]
ls ,

(A.2.4)

where

r
[n]
ls =

m
[n]
l,i g(ds;α

[n]
l,i , β

[n]
l,i )∑Li

h=1m
[n]
h,ig(ds;α

[n]
h,i, β

[n]
h,i)

. (A.2.5)



Page 202 APPENDIX 1. DERIVATIONS FOR MML

As I(Θi) of I([us, ds]
S
s=1,Θi) is independent of [us]

S
s=1, it can be pulled out of the

summations, leaving only I([us, ds]
S
s=1 | Θi) inside. Also, we will omit C from

the subsequent derivations for the same reason and to prevent clutter. Resuming
from before and simplifying, we get

Q(Θi,Θ
[n]
i ) = −Li − 1

2
log(S) +

1

2

Li∑
l=1

log(ml,i) + log(Li − 1)!

+

Li∑
l=1

log

(
1

βl,i

)
+

Li∑
l=1

log

(
2

π(1 + α2
l,i)

)

− 1

2

Li∑
l=1

log

(
S2

β2
l,i

[
αl,iψ

(1)(αl,i)− 1
])

+

Li∑
l=1

S∑
s=1

log(ml,i)p(us = l | ds,Θ[n]
i )

+

Li∑
l=1

S∑
s=1

log(g(ds;αl,i, βl,i))p(us = l | ds,Θ[n]
i ).

(A.2.6)

This concludes the E-step.

For the M-step, we first take the partial derivative of Q(Θi,Θ
[n]
i ) with respect

to ml,i, αl,i and βl,i before equating them separately to 0, i.e.

∂Q(Θi,Θ
[n]
i )

∂ml,i

= 0 (A.2.7)

∂Q(Θi,Θ
[n]
i )

∂αl,i
= 0 (A.2.8)

∂Q(Θi,Θ
[n]
i )

∂βl,i
= 0. (A.2.9)

After solving for their roots, we obtain

m
[n+1]
l,i =

1
2

+ S
[n]
l

S + Li
2

(A.2.10)

β
[n+1]
l,i =

∑S
s=1 dsr

[n]
ls

α
[n]
l,i S

[n]
l

, (A.2.11)
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where S[n]
l =

∑S
s=1 r

[n]
ls . The expression for α[n+1]

l,i does not have a closed form,
since

log

(∑S
s=1 dsr

[n]
ls

S
[n]
l

)
−
∑S

s=1 r
[n]
ls log(ds)

S
[n]
l

+
2α

[n+1]
l,i

S
[n]
l

[
1 +

(
α

[n+1]
l,i

)2
]

+
1

2S
[n]
l

α[n+1]
l,i ψ(2)(α

[n+1]
l,i ) + ψ(1)(α

[n+1]
l,i )

α
[n+1]
l,i ψ(1)(α

[n+1]
l,i )− 1


− log(α

[n+1]
l,i ) + ψ(0)(α

[n+1]
l,i ) = 0.

(A.2.12)

Therefore, α[n+1]
l,i has to be searched for numerically using root-finding algorithms.
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APPENDIX TWO

PBDT TOOLKIT APPLICATION

This appendix presents the graphical application created as part of this research
for facilitating the understanding of the estimates obtained using the PBDT algo-
rithm.

Figure B.0.1 shows the main tab of the developed application. It allows the
disaggregation algorithms and their various parameters to be configured. It also
lets the user selects the appliances that should be extracted, among others. Other
views in this tab are mostly for changing the display of the plots.

Figure B.0.1: The main tab of the developed GUI application.
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The second tab of the application is shown in Figure B.0.2, in which accuracy
of the disaggregation and the overall summary of the disaggregated energy are
displayed.

Figure B.0.2: The second tab of the developed GUI application.

The third tab of the application is presented in Figure B.0.3. Its main purpose is
to display the estimates represented by different particles of the PBDT algorithm.
This view enables wrong estimates to be investigated at a very detailed level and
has been used as the basis for explaining the mistakes made by the algorithm in
Chapter 4.

On the other hand, the fourth tab, as shown in Figure B.0.4, provides a view
on each particle’s ancestry, which also facilitates the task of identifying and un-
derstanding the failure modes of the algorithm.

Finally, Figure B.0.5 allows us to visualise the Cumulative Error Log Likehood
Ratio (CELLR) explained in Chapter 4 for attributing whether disaggregation er-
rors are due to the truncation procedure of PBDT or a result of inaccuracies in the
emission model.
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Figure B.0.3: The third tab of the developed GUI application.

Figure B.0.4: The fourth tab of the developed GUI application.
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Figure B.0.5: The fifth tab of the developed GUI application.
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